Hypervisors in Embedded Systems: Applications and Architectures

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Abstract — As microprocessor architectures have evolved with direct hardware support for virtualization, hypervisor software has become not just practical in embedded systems, but present in many commercials applications. This paper discusses embedded systems use cases for hypervisors, including their use in workload consolidation and security applications.

Introduction

Hypervisors are a type of operating system software that allows multiple traditional operating systems to run on the same microprocessor [1]. They were originally introduced in traditional IT data centers to solve workload balancing and system utilization challenges. Initial hypervisors required changes to the guest OS to compensate for a lack of hardware support for the isolation required between guest operating systems. As microprocessor architectures have evolved with direct hardware support for virtualization, hypervisors have become not just practical in embedded systems, but are present in deployed applications [2]. Hypervisors are here to stay in embedded systems. This paper discusses embedded systems use cases for hypervisors, including their use in workload consolidation and security applications.

Read more of this post

Physically Unclonable Functions – A new way to establish trust in silicon

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Download full paper https://bringyourownit.files.wordpress.com/2018/03/puf-physically-unclonable-functions-a-new-way-to-establish-trust-in-silicon.pdf

Abstract — As billions of devices connect to the Internet, security and trust become crucial. This paper proposes a new approach to provisioning a root of trust for every device, based on Physical Unclonable Functions (PUFs). PUFs rely on the unique differences of each silicon component introduced by minute and uncontrollable variations in the manufacturing process. These variations are virtually impossible to replicate. As such they provide an effective way to uniquely identify each device and to extract cryptographic keys used for strong device authentication. This paper describes cutting-edge real-world applications of SRAM PUF technology applied to a hardware security subsystem, as a mechanism to secure software on a microcontroller and as a basis for authenticating IoT devices to the cloud.

Introduction

The Internet of Things already connects billions of devices and this number is expected to grow into the tens of millions in the coming years [5]. To build a trustworthy Internet of Things, it is essential for these devices to have a secure and reliable method to connect to services in the cloud and to each other. A trustworthy authentication mechanism based on device-unique secret keys is needed such that devices can be uniquely identified and such that the source and authenticity of exchanged data can be verified.

In a world of billions of interconnected devices, trust implies more than sound cryptography and resilient transmission protocols: it extends to the device itself, including its hardware and software. The main electronic components within a device must have a well-protected security boundary where cryptographic algorithms can be executed in a secure manner, protected from physical tampering, network attacks or malicious application code [18]. In addition, the cryptographic keys at the basis of the security subsystem must be securely stored and accessible only by the security subsystem itself. The actual hardware and software of the security subsystem must be trusted and free of known vulnerabilities. This can be achieved by reducing the size of the code to minimize the statistical probability of errors, by properly testing and verifying its functionality, by making it unmodifiable for regular users and applications (e.g. part of secure boot or in ROM) but updateable upon proper authentication (to mitigate eventual vulnerabilities before they are exploited on a large scale). Ideally, an attestation mechanism is integrated with the authentication mechanism to assure code integrity at the moment of connecting to a cloud service [3].

Read more of this post

Hardware Enforced Virtualization Of Llinux Home Gateways

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Abstract — Trust and security are central to embedded computing as network devices – such as home gateways – have become the first line of defense for the IoT devices connected to the smart home. In this paper, we present a virtualization-based approach to securing home gateway while preserving functionality and performance.

Introduction

Trust and security have never been more important to the embedded computing world, especially when it comes to network devices, such as home gateways, that are the first line of defense for the IoT devices connected to the smart home [4]. In 2017, a plethora of stories have confirmed that these devices are fundamentally broken from a security perspective.

Read more of this post