
www.embedded-world.eu

User Mode Interrupts
 A Must for Securing Embedded Systems

Sandro Pinto

Universidade do Minho

Guimarães, Portugal

sandro.pinto@dei.uminho.pt

Cesare Garlati

prpl Foundation

Santa Clara, CA, USA

cesare@prplFoundation.com

Abstract— With the advent of the Internet of Things (IoT),

devices are becoming smaller, smarter and increasingly

connected. This explosion in connectivity creates a larger attack
surface and new security threats. Recent cybersecurity attacks

clearly demonstrated that the success of this new Internet era

depends heavily on the security of those embedded devices that

make up the IoT. In this paper, we argue in favor of a paradigm
shift in the way computing systems are conceived and designed.

We explain why the free and open RISC-V ISA promises to be a

game-changer for embedded security, and we share our
experience developing the industry-first RISC-V secure

implementation of FreeRTOS based on MultiZone Security, the

first Trusted Execution Environment for RISC-V. In the context
of this research, we explain how to implement user-mode

interrupts to secure modern embedded systems.

Keywords—Security; Containers, Trusted Execution

Environment; TEE; MultiZone; User Mode Interrupt; RISC-V;

firmware; embedded systems

I. INTRODUCTION

The world is undergoing an unprecedented technological
transformation, evolving from isolated systems to ubiquitous
Internet-enabled 'things' capable of generating and handling
vast amounts of security-critical and privacy-sensitive data [1].
This novel paradigm, commonly referred to as the Internet of
Things (IoT), is a new reality that is enriching our everyday life
but simultaneously creating several risks. Recent cybersecurity
incidents, such as the Mirai Botnet, have clearly demonstrated
that the success of this new Internet era is heavily dependent
upon the trust and security built in these IoT devices.

The ongoing cat-and-mouse game of hacks and patches is
largely due by the intrinsic lack of security of the traditional
computing model, which is not safe nor secure. Mainstream
operating systems (OSes) are designed for functionality and
speed. These systems follow a monolithic architecture, with
most of the services enjoying privileged execution rights.
Typically, programs share the same access to code and data
and functional blocks communicate via shared memory
structures such as buffers, stacks and hypes – a single failure in
one component can bring the entire system down [2]. Even
more evolved systems that implements virtual memory
protection schemas have shown several vulnerabilities, mainly
due to the complexity of the software necessary to operate the
underlying MMU [3].

Over the last decades, several security-oriented
technologies, such as Arm TrustZone [4] and Intel SGX [5],
have been developed with the aim of providing stronger
security primitives anchored in hardware. However, the sad
reality is that these security technologies often fail to deliver on
the promise. Firstly, they depend on specific hardware which is
not typically available on all platforms. Secondly, the
overwhelming complexity of properly implementing these
security technologies often results in them not being used at all.
Finally, over the last few years, confidence in these systems
have been regularly questioned, due to the systematic
discovery of critical vulnerabilities mostly due to their closed-
source proprietary nature [4, 6, 7].

As the number of IoT devices grows into the trillions, the
road to a trustworthy Internet of Things requires an urgent
paradigm shift in the way modern computing systems are being
built. Bloated ‘vertical’ monolithic operating systems should
give rise to a multitude of light weight ‘horizontal’
microkernels. Microkernel-based OSes implements a small
TCB as the core of the system, with OS services separated into
mutually-protected userland servers. Apart from the reduced
TCB, microkernels promote a set of design principals, such as
the least privilege and fault containment, which favors for
security.

Recent advances in computer architectures have brought to
light an innovative computer architecture named RISC-V.
RISC- V distinguishes from traditional platforms by offering a
free and open instruction set architecture (ISA). RISC-V
promises to be a game-changer for security by favoring
simplicity over complexity, and by defining a comprehensive
set of security building blocks in the ISA itself – so that the
hardware “hooks” are already built into any RISC-V core. The
job of orchestrating these security features and encapsulating
their inherent complexity in proper implementations is left to
the software layer. And in particular to a new class of light-
weight microkernels providing silicon-level containerization
and ultimately policy-driven hardware-enforced security
through separation. The free and open standard MultiZone
Security is the first Trusted Execution Environment
specifically developed from the ground up for RISC-V [8].
MultiZone Security differs from traditional TEEs because it
does not depend on custom hardware and simplifies the
creation of secure end-to-end system stacks.

In this paper, we start by discussing why the security of
traditional computing model is fundamentally flawed and why
we urgently need to change the way computing systems are
designed at the core. We explain why RISC-V promises to be
the most secure platform and we share our experience
developing the industry-first secure implementation of
FreeRTOS for RISC-V. In the context of the capabilities
offered by the MultiZone TEE, we explain the implementation
of unprivileged user-mode interrupts as a mechanism to
enhance the security of modern embedded systems.

II. THE FLAWED TRADITIONAL COMPUTING MODEL

We argue that the security of traditional computing is
flawed with regard to the monolithic architecture of
mainstream operating systems and the lack of underlying
separation provided at the hardware level. A typical example is
the Linux implementation of the TCP/IP stack – by definition
exposed to remote attack - as part of the kernel itself. Since
general purpose OSes are designed for functionality and broad
platform support, their size and complexity has grown well
beyond the limit that security experts deem acceptable.
Systems featuring a bloated TCB are intrinsically more
vulnerable. The likelihood of undetected code vulnerabilities
increases as a result of a larger number of lines of source code
[3]. However, given the lack of pervasive hardware separation
mechanisms, even in low-end embedded applications, where
the TCB is typically several orders of magnitude smaller, we
see general purpose operating systems that combine all
functional code blocks in the same privileged space – if any
available at all, which leads programs to share the same access
to code and data (Fig. 1).

Fig. 1. Traditional computing model.

As the complexity of these systems grows, they tend to
become an assemble of different code bases in the form of
libraries developed and maintained by different commercial
entities and open source communities. The quality and security

posture of which is simply impossible to formally verify for
non-trivial functionality. Due to the monolithic nature of the
kernel, a single vulnerability in one component is usually
enough to lead to privilege escalation, to exploit the entire
system and likely to pivot into additional network-connected
high value targets. For example, FreeRTOS, which has a TCB
orders of magnitude smaller than Linux, was recently
compromised due to several vulnerabilities in its integrated
TCP/IP stack [2].

Even though rich operating systems usually implements
some mechanisms intended to restrict unconditional access to
memory-mapped resources (e.g., virtual memory via MMU),
the complexity of these mechanisms makes them far from
unbreachable. For example, the implementation of virtual
memory management and hardware memory management
units (MMU) has several drawbacks. Firstly, they require
relative expensive hardware (e.g., silicon gates and TLBs) and
software (e.g., 2-stage or 3-stage translation tables). Secondly,
these systems require complex software layers to operate the
MMU itself, which tends to increase the TCB of the system. As
software is a product of the human intellect, it is guarantee to
have defect – known as bugs. The resulting increase in TCB
inevitably leads to an increased number of vulnerabilities.
Nevertheless, even in resource constrained devices, which are
expected to power the IoT, “the design complexity associated
with correctly implementing technologies like memory
protection units (MPUs) often results in them not being used at
all” [9].

The very idea that simply adding complex hardware
security primitives automatically results in more resilient
systems is naïve at best – and often driven by aggressive
marketing strategies. On the contrary, complexity is the enemy
of security. Leading TEE solutions, such as Arm TrustZone
and Intel SGX, enjoy vast mind share among developers, but
have significant limitations. Firstly, they rely on specific
hardware which is typically not available on all platforms.
Secondly, they are admittedly complex and difficult to
understand and properly implement. Finally, over the last few
years, they have been witnessing a massive number of hacks
and attacks, which have abruptly reduced the confidence in
these systems. For example, a recent survey on Arm’s
TrustZone technology [4] revealed that, according to the
National Vulnerability Database (NVD) and several security
bulletins (e.g., Qualcomm, Huawei, and Samsung), there are
more than 130 known vulnerabilities regarding TrustZone and
TrustZone-based TEE – and some can’t be patched as they are
rooted in hardware.

III. THE NEED FOR A SECURITY PARADIGM SHIFT

While traditional computing systems implement security by
adding complexity in the form of new layers of hardware and
software, a more modern concept is to start from a minimalist,
formally verifiable microkernel to enforces separation. The
resulting system has a horizontal structure, with applications
and services running side-by-side in isolated domains - see Fig.
2. These containers should be loosely-coupled and should not
share any memory-mapped resources. Communications should
be implemented through a secure message-based system. Time

www.embedded-world.eu

and space isolation should be enforced by a preemptive kernel
according to policies statically defined by the system designer.

This multi-domain design ensures that faults are contained
within the sandbox and cannot affect the other parts of the
system. These are analogous to docker containers implemented
in servers [11], but do not require the underlying Kubernetes
infrastructure which is not practical in resource-constrained
devices.

To be resilient, this new security paradigm has to be strictly
coupled with innovative processor architectures such as the
free and open RISC-V ISA. Introduced in 2011, the RISC-V
ISA has rapidly grown in popularity and has now reached a
level of maturity suitable for commercial applications. RISC-V
promises to be a game-changer for security due to the openness
and simplicity of its ISA. The ISA itself defines some security
building blocks which include four well-defined privileged
levels (rings), a set of physical memory protection
mechanisms, and user-level interrupts extensions. The four
privilege levels include: Machine mode (M-mode), Hypervisor
mode (H-mode), Supervisor mode (S-mode), and User mode
(U-mode). The combination of M and U modes is particularly
suitable for resource-constrained embedded systems. To
control access to physical memory-mapped resources, RISC-V
specifies a state-of-the-art physical memory protection (PMP)
unit. In addition, the “N” extension allows interrupt delegation
to user mode from higher privilege levels. “N” extensions
define a framework that can also be implemented in software –
via trap-and-emulate – for processors that lack this extension.

Fig. 2. Microkernel-based system: all functional blocks are isolated.

IV. THE MULTIZONE TEE APPROACH

MultiZone Security is the first Trusted Execution
Environment designed from the ground up to leverage the
hardware “hooks” built into the standard RISC-V ISA [8].
MultiZone Security allows system designers to properly
implement secure RISC-V applications without requiring
specialized security skills or changes to the existing

development processes. MultiZone software is available on
GitHub under Apache license 2.0 - free for non-commercial
use.

 MultiZone Security segregates the various functional
blocks into an unlimited number of physically separated
“Zones”. With the Multizone Configurator, the system designer
defines read / write / execute policies and maps various
physical resources to each zone - RAM, ROM, I/O, interrupts.
Resource assignment if fine-grained down to 4-byte. Zones can
overlap resources although this is not considered a best practice
and will be flagged by the configurator. Inter-zone
communications are secured via the InterZone messenger,
which uses no shared memory. MultiZone differs from legacy
TEE technology in several ways: it doesn’t require custom
hardware primitives - MultiZone works with any standard
RISC-V core, it supports an unlimited number of equally
secure zones - contrary to the antiquated TrustZone model of
the two secure / non-secure worlds, and it doesn’t require
changes in existing code – as it traps & emulates privileged
instructions.

Fig. 3. MultiZone system configured to run four independent zones.

Fig. 3 depicts the MultiZone-based system that we
developed to show a real-world example of our proposed
security model. The system is configured to run four
independent zones. These zones implement the basic functional
blocks typically present in embedded connected devices, such
as smart sensor and IoT endpoints in general. Zone 1 runs the
industry-first RISC-V secure implementation of the popular
FreeRTOS, zone 2 runs a secure TCP/IP stack, zone 3 provides
Root of Trust, and zone 4 runs a bare-metal command line
interface (CLI) for verification and benchmarking of the TEE.
All zones are completely isolated and communicate through
well-defined message-based interfaces provided by the secure
InterZone Messenger. The MultiZone preemptive scheduler
multiplexes zones execution according to a round-robin
schema. An equally secure and more responsive cooperative
behavior is possible by linking the yield () API part of the
MultiZone C Library. Our research focuses on secure IoT
devices that implement RISC-V M and U modes. To secure
FreeRTOS, we adapted its source code to run in unprivileged
user-mode. These modifications include FreeRTOS startup
code, task management, context switching, exception handling
and time management. In addition, we secured exception
handling (Section IV.A) and time management (Section IV.B).

A. Exception Handling

The RISC-V ISA divides exceptions into two categories:

synchronous exceptions and asynchronous interrupts - see

Table 1. Synchronous exceptions arise as a result of

instruction execution, such as accessing an invalid memory

address or executing an instruction with an invalid opcode.

Interrupts, in turn, are external events that are asynchronous to

the instruction stream.

Interrupt/
Exception

Exception
Code

Description

1 3 Machine software interrupt

1 7 Machine timer interrupt

1 11 Machine external interrupt

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 11 Environment call from M-mode

Table 1 – RISC-V ISA exception and interrupt cause.

MultiZone User Mode Exceptions. The MultiZone TEE

executes exceptions handlers in secure unprivileged user

mode, in the context of the zone that triggers the synchronous

exception or that is mapped to the specific interrupt. RISC-V

exceptions are raised at the highest privilege level. The

MultiZone TEE traps into the nanokernel and then forwards

execution to the appropriate zone – if not already in scope.

MultiZone provides two distinct C Library APIs to register

synchronous exceptions and interrupt handlers:

ECAL_TRP_VECT () and ECALL_IRQ_VECT () (see

Listing 1). The registration of a handler automatically enables

the relative interrupt. Each zone can register a separate handler

for each RISC-V synchronous exception while external

asynchronous interrupt handlers are individually assigned to a

single zone according to the policies defined in the MultiZone

configuration file.

Listing 1 - MultiZone C API for registering exceptions and interrupt handlers.

User Mode Synchronous Exceptions. In our secure

implementation of FreeRTOS, the xPortStartScheduler

method registers all synchronous exceptions with the TEE via

the ECAL_TRP_VECT API. All traps point to a common

handler _syncexception_entry - implemented in the FreeRTOS

assembly file portasm.S. Note that by design, the secure

execution of exception handlers in unprivileged mode means

that the rich operating system itself isn’t trusted with trapping

mechanisms other than the ones allowed by the TEE – i.e.

yield. The message is placed in the mailbox by the nanokernel

when the synchronous exception is triggered, before

forwarding it to the zone. It contains the values of the mcause,

mtval and mepc which are passed as arguments to the

application exception handler described in the previous

section. After the application handler's execution, its return

value is stored in the stack, so that execution returns to a

handler defined address and not necessarily to the original

preempted instruction. The MultiZone TEE supports low-

latency vectored interrupts that map each interrupt source to

its handler. However, we opted for a simplified

implementation. All exceptions are served by a single handler

responsible for consistent exception entry and exit behavior -

e.g., save and restore task context. The _syncexception_entry

handler redirects execution to an application-defined method

which must be named handle_syncexception. As implemented

in our demo application, this method takes in input the register

values mcause, mtval, mepc and returns the appropriate value

of the register mepc pointing to the instruction to be executed

upon exit. The synchronous exceptions entry point is

implemented in the _syncexception_entry. After disabling

interrupts and saving the preempted context, the

ECALL_RECV system call is used to poll messages from the

zone's inbox.

Listing 2 – Registering of synchronous exceptions in xPortStartScheduler.

User Mode Interrupts. Most interrupts are tied to the
application logic and as such handled at that level. Application
code registers the relevant interrupt handlers dynamically
through the ECALL_IRQ_VECT API - common entry point
_interrupt_entry. The final handler handle_interrupt receives in
input the value of the mcause register to properly forward the
execution – see as an example the interrupt setup shown in
Listing 3.

Listing 3 – Interrupt initialization example at the application level

/* MultiZone API - libhexfive.h */
…

/* Registers a handler against a trap*/
void ECALL_TRP_VECT (int, void *);

/* Registers a handler for an interrupt*/
void ECALL_IRQ_VECT (int, void *);
…

BaseType_t xPortStartScheduler (void)
{

...
/* 0x0 Instruction address misaligned */
ECALL_TRP_VECT(0x0,syncexception_entry);
/* 0x1 Instruction access fault */ ECALL_TRP_VECT(0x1,
_syncexception_entry);
...
/* 0x7 Store access fault */ ECALL_TRP_VECT(0x7,
_syncexception_entry);
...

}

/*Entry Point for Machine Timer Interrupt Handler*/ void
vPortSysTickHandler()
{
/* Calculate next compare value */
const uint64_t now = ECALL_CSRR_MTIME();
const uint64_t then = now + (configRTC_CLOCK_HZ /
configTICK_RATE_HZ);
/* Increment the RTOS tick. */
if (xTaskIncrementTick() != pdFALSE){ ulPortYieldRequired =
pdTRUE;
}
/* Request next timer interrupt */ ECALL_CSRW_MTIMECMP(then);

www.embedded-world.eu

/* Application - Button 0 interrupt
initialization */ void b0_irq_init()
{

...
/* Enable the interrupt */
ECALL_IRQ_VECT(16+LOCAL_INT_BTN_0, _interrupt_entry);
localISR[IRQ_M_LOCAL + LOCAL_INT_BTN_0] =
button_0_handler;

}

Our implementation defines two groups of interrupt handlers in
the form of arrays: one for core-local interrupts, localISR, and
one for external platform-level interrupts, _interrupt_handlers.
Therefore, interrupt setup differs depending on whether it is a
local or global interrupt. local_irq_en simply adds the handler
to local handler array and registers the exact interrupt ID with
the TEE. For global interrupts, g_ext_interrupt_handlers first
sets up the PLIC, then adds the handler to the global interrupt
array and finally registers the machine external interrupt ID
(11) with the TEE. The main interrupt handler written in
assembly is the _interrupt_entry. This low-level handler acts as
prologue and epilogue to the application handler and
implements the interrupt entry and exit logic.

Listing 4 – Low-level interrupt handler (interrupt entry logic).

Listing 4, shows the interrupt entry logic, till the moment the
application level handler is called. The interrupt entry logic
starts by saving the preempted context's register file to the
stack. Next, it places the value of the mcause register in s0
register, a callee- saved register, which guarantees this value is
unchanged until the handler finishes execution. Then the
current task TCB pointer is saved via the
portSAVE_CONTEXT and execution continues to the
application handler. The exit logic is the reverse process and
implements the restore operation.

B. Timer Management

RISC-V platforms provide a real-time counter (machine
timer) exposed as a memory-mapped machine mode register
(mtime). In the context of MultiZone, timers are provided to
zones through emulation of the machine timer. At the
FreeRTOS level, time management reduces to the
management of the tick timer. So, modifications were
performed on the timer initialization and the interrupt handler
itself.

Timer initialization. MultiZone provides a software
implementation of the machine timer unique to each Zone. Soft
timer initialization is done via the vPortSetupTimerInterrupt –
see listing 5. It reads the current time via the
ECALL_CSRR_MTIME API and then calculates the timestamp
of the next tick. It then installs the timer handler for the timer
exception and sets the Zone's timer compare register via the
ECALL_CSRW_MTIMECMP - which also enables the
exception. The reason for registering the timer handler as
software trap rather than asynchronous interrupt is that this
specific hardware implementation of RISC-V has only one
physical timer available for the whole system. Therefore, its

secure implementation is emulated in software by the TEE.
Note that this doesn’t affect in any way the application flow as
soft timer interrupts are at all the effects asynchronous in the
context of the Zone execution. The software implementation
does however affect resolution and jittering of the zone as soft
timer interrupts remains pending until the Zone is in context.
The actual impact on the system is however negligible thanks
to the cooperative behavior of the MultiZone scheduler.

Listing 5 – Implementation of Timer initialization.

Timer interrupt. The timer interrupt handler (Listing 6) is
similar to the common interrupt handler. The only difference is
that instead of calling the generic interrupt handler, it calls
directly the system tick handler vPortSysTickHandler. The
vPortSysTickHandler function calculates the value of the timer
for the next tick and calls the xTaskIncrementTick, which
returns true if a new task is active and sets ulPortYieldRequired
value accordingly. This value will later be checked on the
handler epilogue to eventually trigger a context-switch. Finally,
the soft timer compare register is set to the new tick value -
which also re-enables the timer exception.

Listing 6 – Timer interrupt handler.

V. CONCLUSION

In this paper we have discussed why RISC-V promises to
change the way we build our systems for the better. We
reported our experience in porting FreeRTOS for MultiZone
Security, and we have highlighted the benefits of user mode
interrupts for security.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Boran Car and Don
Barnetson of Hex Five Security, Inc. for their help with
MultiZone and José Martins of the University of Minho for the
porting of FreeRTOS.

_interrupt_entry:
...
/* Save RegFile context
*/ pushREGFILE
/* Save mcause */
LOAD s0, MCAUSE_OFFSET(sp)
STORE zero, MCAUSE_OFFSET(sp)
...
/* Save Task context*/
portSAVE_CONTEXT
/* Call IRQ handler (a0 = s0 =
mcause) */ mv a0, s0
jal handle_interrupt
...

void vPortSetupTimerInterrupt() {

/* Calculate first tick timer compare */

const uint64_t ullCurrentTime = ECALL_CSRR_MTIME();

const uint64_t ullNextTime = ullCurrentTime +
(configRTC_CLOCK_HZ / configTICK_RATE_HZ);

/* Setup mtimer handler */ ECALL_TRP_VECT(0x3, _timer_handler);

/* Request first tick interrupt */
ECALL_CSRW_MTIMECMP(ullNextTime);

}

REFERENCES

[1] Geert-Jan Schrijen and Cesare Garlati. “Physically Unclonable
Functions – A new way to establish trust in silicon”. In Proceedings of
the Embedded World Conference, ISBN 978-3-645-50173-6, 2018.

[2] Ori Karliner, “FreeRTOS TCP/IP Stack Vulnerabilities Put A Wide
Range of Devices at Risk of Compromise: From Smart Homes to
Critical Infrastructure Systems.” Zimperium, 18 October, 2018.

[3] Simon Biggs, Damon Lee, and Gernot Heiser. "The Jury Is In:
Monolithic OS Design Is Flawed: Microkernel-based Designs Improve
Security." In Proceedings of the 9th Asia-Pacific Workshop on Systems,
p. 16. ACM, 2018.

[4] Sandro Pinto and Nuno Santos, “Demystifying Arm TrustZone: A
Comprehensive Survey.” ACM Computing Surveys, vol. 51, no. 6,
article 130, December 2018.

[5] Victor Costan and Srinivas Devadas. "Intel SGX Explained." IACR
Cryptology ePrint Archive, no. 086, 1-118, 2016.

[6] Di Shen. "Exploiting TrustZone on Android." Black Hat USA, 2015.

[7] Jo Van Bulck et al. "Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution." 27th USENIX
Security Symposium, pp. 991-1008, 2018.

[8] Hex Five Security Inc. “MultiZone Security”. White Paper, 2018.
https://hex-five.com

[9] [Brandon Lewis. “Secure IoT devices from the microcontroller, up.”
Embedded Computing, 18 July, 2018.

[10] Babak Bashari Rad et al. “An Introduction to Docker and Analysis of its
Performance.” International Journal of Computer Science and Network
Security, vol.17, no.3, March 2017.

