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Abstract — The attack surface in embedded systems has grown 

exponentially as connectivity requirements are increasingly met 

with the integration of readily available 3rd party libraries. A new 

Zero Trust Model is required to address the intrinsic security 

threat posed by the resulting monolithic firmware. This paper 
explores a new modern approach based on open source hardware 

and software where security through separation is achieved via a 

state-of-the-art multi-domain Trusted Execution Environment 

(TEE) for RISC-V processors. 
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I.  INTRODUCTION 

Embedded devices are a part of the daily lives of people all 
around the world. As devices get more personal and become 
placed in increasingly sensitive environments, the security of 
those devices becomes paramount. Security is a multi-tier 
approach, with different solutions being used across the 
industry depending on device capabilities and functionalities. 
Most security challenges faced by those resource-constrained 
devices that make up the Internet of Things can be minimized 
by enforcing physical separation between functional blocks and 
by properly implementing established encryption schemas to 
protect data in transit and at rest.  

II. A MULTI-TIER APPROACH TO SECURITY 

Embedded devices come in all shapes and sizes - small or 
large, resource constrained or memory abundant, slow or fast, 
with or without on-board peripherals, bare metal or with 
operating system, network connected or air gapped, machine-
to-machine oriented or human driven. This heterogeneous 
landscape means that how each of these devices approaches the 
topic of security can also be as diverse as their component 
makeup. In bare metal environments there may be very little to 
no security in place. Mid-range devices will commonly run a 
Real Time Operating System (RTOS) offering some level of 
functional separation through tasks. Higher-end systems may 
run rich operating systems – such as Linux, which typically 
provide some additional security features including privilege 

levels and virtual memory. State-of-the-art security however 
requires a multi-tier approach all way from the processors up to 
operating systems and application and networking levels.   

In addition, security should be implemented with multiple 
rings of protection so that a single failure point, such as a 
vulnerable library component, does not result in a complete 
system breach. 

III. SECURITY THROUGH SEPARATION 

Unfortunately, the security of today’s embedded devices  
leaves much to be desired as they are essentially developed as 
a monolithic block of firmware. Many embedded systems don’t 
provide a means of separation between functional components.  
Components run with access to the same memory space and 
peripherals, and may run under the same – single - privilege 
level. Security can only be as strong as the weakest link in the 
chain. If one component is compromised, an attacker could use 
that component as an entry point into the system - taking control 
of device functionality, causing incorrect behavior, or at the 
extreme putting lives at risk in safety critical applications.  

The most effective means of separation starts at the 
hardware level. Some embedded platforms provide virtual 
memory that can help with separation between tasks and/or 
processes. Virtual memory uses a hardware-based memory 
management unit (MMU) to assign and manage separate virtual 
memory regions between tasks or processes. Each virtual 
memory region starts at address zero, making it easy for 
applications to use the address space as if they were the only 
ones on the system.  

Virtual memory brings with it a benefit for increased 
security, and provides one foundational layer in a multi-tiered 
approach to securing embedded devices. Using virtual memory 
as one security layer, embedded engineers can begin to create a 
system-wide security plan by adding additional security 
measures to the other components in the system. This may 
include adding security to device communications via 
SSL/TLS, encrypting sensitive data at rest, or sanitizing user 
interaction at the application level.  



However, Virtual memory suffers from three intrinsic 
limitations: it requires dedicated hardware such as an MMU, it 
introduces a large software attack surface necessary to operate 
the MMU – current Linux kernel is approximately 18 million 
lines of code, and it only provides separation between kernel 
and user space. The kernel remains the single point of failure  
where the most damaging vulnerabilities occur. [1] 

A. Minimizing Code Complexity 

Software is a product of the human intellect and as such all 
code inherently contains bugs. Bugs can easily turn into 
security vulnerabilities that may someday compromise a 
device. To minimize the overall security risk, all software 
should be as transparent and as simple as possible. To 
understand how code size can affect the number of defects in a 
device, we can look at one of the most widely used software 
packages: the Linux kernel [2]. At the time of writing, running 
the open source “gitstats” tool [3] over the Linux kernel 
codebase shows a total of 18 Million (18,349,938) lines of C 
code alone included in the kernel repository.  

 

Fig. 1. Lines of Code in Linux Kernel (gitstats) 

Assuming that all 18 Million lines of code are compiled as 
part of the kernel, how many possible bugs or defects could be 
included in those lines of code? Best practices yield an 
exploitable defect rate of 0.1 per 1000 lines of code [3][4], in 
this case projecting 1,835 possible vulnerabilities. 

B. Third Party Software Risks 

Most commercial products are not developed by any single 
vendor. They are rather composed of hundreds of hardware and 
software libraries combined with some unique code to meet the 
functional and budgetary constraints of the system. These 3rd 
party libraries pose an increasing threat vector for embedded 
systems as they may contain intentional or unintentional 
exploitable vulnerabilities.  

In some cases, this 3rd party software is available in the form 
of source code. This is certainly good for transparency and 
maintenance, although downstream developers rarely have the 
expertise or the resources to perform independent code review 
and formal verification. In other cases, such as 3rd party security 
or DRM libraries, the software is only available in the form of 
object code or binaries. This black box approach precludes 
independent code review and forces the adopter to trust with 
their product the whole upstream supply chain responsible for 
the code base. 

If this 3rd party code is assembled without any functional 
separation, then a single vulnerability can compromise the 
whole system. A new paradigm of a Zero Trust Model is 
necessary to protect a system from these new system-internal 
threat vectors. 

IV. IMPLEMENTING A ZERO TRUST MODEL 

A Zero Trust Model in the scenario described above 
requires separation between each primary threat vector and the 
core function of the system. Envision a simple system which 
contains the following elements: 

1. An exposed network interface. 

2. A set of secrets used to secure the network interface and 
validate the system back to a host. 

3. A real-time operating system running a set of business 
logic functions – tasks. 

4. A set of actuators to control external physical systems. 

Each one of these elements would likely contain 3rd party 
code and thus should be isolated from the other elements. The 
exposed networking interface and the secrets used to secure the 
network present an additional attack surface as they could be 
accessed externally and allow an attacker to penetrate a broader 
communication system. 

Implementing a Zero Trust Model for this scenario requires 
at least four different blocks of separation or containers. As 
noted earlier, MMUs allow separation only between user and 
kernel functions – several of these blocks are traditionally built 
inside a monolithic kernel and thus impossible to separate and 
protect using virtual memory and MMU. 

A traditional TEE such as ARM’s TrustZone [6] provides 
only two areas: a secure world which is typically used to store 
secrets and a rich OS world which is typically used to do 
everything else. This antiquated design fails to provide enough 
blocks to properly implement the proposed Zero-Trust Model. 
In fact, it forces the system designer to combine operating 
system, network stack and business logic inside a single 
“world” where the exploit of any block vulnerabilities results in 
the whole system breach [reference]. 

V. LEVERAGING FREE AND OPEN RISC-V ISA 

Oftentimes the implementation of an embedded TEE 
requires additional specialized hardware, internal or external to 
the main processor. In practice, this makes the TEE 
implementation very difficult if not impossible. On the 
contrary, the free and open RISC-V ISA specifies most of the 
TEE hardware requirements as part of the Privileged specs, 
which makes the TEE hardware enablers available out-of-the-
box in any RISC-V processors without the need for additional 
specialized hardware.  

RISC-V is an open instruction set architecture (ISA) [7][8], 
that offers innovative features helpful to a TEE implementation.  
Some of these features include privileged execution levels, 
physical memory protection (PMP), and user-mode interrupt 
delegation. The first helpful feature of the RISC-V cores is 
privilege levels. At any time, a RISC-V hardware thread, or 
hart, runs at a specific privilege level. Privilege levels include 
User/Application (U), Supervisor (S), and Machine (M). There 
is a fourth privilege mode for Hypervisor (H) that is reserved in 
the current specification. These privilege levels are used to 
provide protection between different components of the 
software stack (RISCV Privileged v1.10). An exception is 
raised if a hart performs operations not permitted by its 
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designated privilege level. A second security built-in feature is 
the Physical Memory Protection (PMP) that allows the highest 
privilege level (M) to protect specific memory regions and 
allow access to them by only threads with a specific privilege 
level. This allow the partition of functionality between 
execution environments and other functional component 
behavior. A third security feature relevant to the TEE 
implementation is the “N” extension. It allows the interrupt 
controller to delegate - transfer - control directly to a secure 
user-level handler rather than processing it at the highest 
privilege level in the outer execution environment. 

 

Fig. 2 RISC-V Privilege Levels 

To enable these hardware capabilities, we based our study 
on the open standard TEE developed by Hex Five Security – a 
member of the RISC-V Foundation – which is freely available 
on GitHub. Hex Five’s   MultiZone Security orchestrates all the 
RISC-V security building blocks to support an unlimited 
number of equally secure functional blocks called Zones. Each 
Zone is intrinsically secure as it runs at the User (U) level: if the 
Zone’s code attempts to access any memory-mapped resource 
– ram/rom/peripherals – that is not specifically assigned to the 
Zone’s policy, the processor itself raises a non-maskable 
exception and the access is the-facto prevented. 

VI. PUTTING IT ALL TOGETHER 

Our practical demonstration system is comprised of a 32-bit 
RISC-V core [9], the   MultiZone Security TEE [10], the real 
time embedded operating system FreeRTOS and some popular 
open source libraries for security – WolfSSL - and networking 
– picoTCP. Four Zones - security domains - are defined via 
policies. Each zone is physically separated and shares no 
resources with the others. Inter-zone secure communications 
are provided by the   MultiZone TEE. 

1. Zone number one runs FreeRTOS. Its built-in TCP/IP 
stack removed and replaced with an interface to the 
messenger infrastructure provided by the TEE. Three 
FreeRTOS tasks include: a CLI application providing a 
user console, a real-time C application controlling the 
movements of a robotic arm, and a PWM application 
controlling the fading of a multicolor led based on 
interrupts generated via push buttons. 

2. Zone number two runs the PicoTCP TCP/IP server [11] 
secured with the WolfSSL TLS library [12. This isolate 
the remote connectivity attack surface from the real 
time operating system. 

3. Zone number three runs the Root of Trust. It stores and 
provides the secret key needed to secure the TLS link. 
Secrets can only be accessed via secure messages. 

4. Zone number four runs a bare metal terminal accessible 
via UART. This interactive application allows to verify 
and benchmark the performance of the TEE. 

 

Fig. 1 -   MultiZone system configured to run four independent zones. 

 To enable communications between the otherwise 
physically separated Zones, their library APIs are wrapped in   
MultiZone messages and routed via the secure infrastructure 
provided by the TEE. This technique allows quick and robust 
integration of the individual library functionality across Zones 
without having to rewrite any of their functions. 

Performance test are performed via Zone number four and 
show median context switch overhead of 120 instructions, and 
memory allocation of 2kB RAM and 4kB flash for the   
MultiZone TEE. In aggregate this overhead is less than 0.1% of 
the CPU and negligible in terms of overall memory resources 
available. 

A more sophisticated and performant implementation of the 
communication interface between operating system and TCP/IP 
stack may include dedicated shared split buffers protected via 
R/W security policies. This will likely be explored in a future 
follow-up research. 

VII. CONCLUSION 

Embedded device security requires a multi-tiered approach, 
where security through separation plays a key role in ensuring 
overall system security. Traditional trusted zone architectures 
appear antiquated and insufficient to protect the attack surface 
introduced by the rapid, unverified integration of 3rd party 
libraries. 

This research shows how a new Zero-Trust Model is not 
only feasible but also well suited to take advantage of modern 
processor platforms, such as RISC-V, and open standard 
Trusted Execution Environments such as   MultiZone.  
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