
www.embedded-world.eu

A New Zero-Trust Model

for Securing Embedded Systems

Chris Conlon

wolfSSL Inc.

Bozeman, Montana, USA

chris@wolfssl.com

Cesare Garlati

prpl Foundation

Santa Clara, California, USA

cesare@prplFoundation.org

Abstract — The attack surface in embedded systems has grown

exponentially as connectivity requirements are increasingly met

with the integration of readily available 3rd party libraries. A new

Zero Trust Model is required to address the intrinsic security

threat posed by the resulting monolithic firmware. This paper
explores a new modern approach based on open source hardware

and software where security through separation is achieved via a

state-of-the-art multi-domain Trusted Execution Environment

(TEE) for RISC-V processors.

Keywords — Embedded security; Internet of Things; IoT; TEE;

Trusted Execution Environment; RISC-V.

I. INTRODUCTION

Embedded devices are a part of the daily lives of people all
around the world. As devices get more personal and become
placed in increasingly sensitive environments, the security of
those devices becomes paramount. Security is a multi-tier
approach, with different solutions being used across the
industry depending on device capabilities and functionalities.
Most security challenges faced by those resource-constrained
devices that make up the Internet of Things can be minimized
by enforcing physical separation between functional blocks and
by properly implementing established encryption schemas to
protect data in transit and at rest.

II. A MULTI-TIER APPROACH TO SECURITY

Embedded devices come in all shapes and sizes - small or
large, resource constrained or memory abundant, slow or fast,
with or without on-board peripherals, bare metal or with
operating system, network connected or air gapped, machine-
to-machine oriented or human driven. This heterogeneous
landscape means that how each of these devices approaches the
topic of security can also be as diverse as their component
makeup. In bare metal environments there may be very little to
no security in place. Mid-range devices will commonly run a
Real Time Operating System (RTOS) offering some level of
functional separation through tasks. Higher-end systems may
run rich operating systems – such as Linux, which typically
provide some additional security features including privilege

levels and virtual memory. State-of-the-art security however
requires a multi-tier approach all way from the processors up to
operating systems and application and networking levels.

In addition, security should be implemented with multiple
rings of protection so that a single failure point, such as a
vulnerable library component, does not result in a complete
system breach.

III. SECURITY THROUGH SEPARATION

Unfortunately, the security of today’s embedded devices
leaves much to be desired as they are essentially developed as
a monolithic block of firmware. Many embedded systems don’t
provide a means of separation between functional components.
Components run with access to the same memory space and
peripherals, and may run under the same – single - privilege
level. Security can only be as strong as the weakest link in the
chain. If one component is compromised, an attacker could use
that component as an entry point into the system - taking control
of device functionality, causing incorrect behavior, or at the
extreme putting lives at risk in safety critical applications.

The most effective means of separation starts at the
hardware level. Some embedded platforms provide virtual
memory that can help with separation between tasks and/or
processes. Virtual memory uses a hardware-based memory
management unit (MMU) to assign and manage separate virtual
memory regions between tasks or processes. Each virtual
memory region starts at address zero, making it easy for
applications to use the address space as if they were the only
ones on the system.

Virtual memory brings with it a benefit for increased
security, and provides one foundational layer in a multi-tiered
approach to securing embedded devices. Using virtual memory
as one security layer, embedded engineers can begin to create a
system-wide security plan by adding additional security
measures to the other components in the system. This may
include adding security to device communications via
SSL/TLS, encrypting sensitive data at rest, or sanitizing user
interaction at the application level.

However, Virtual memory suffers from three intrinsic
limitations: it requires dedicated hardware such as an MMU, it
introduces a large software attack surface necessary to operate
the MMU – current Linux kernel is approximately 18 million
lines of code, and it only provides separation between kernel
and user space. The kernel remains the single point of failure
where the most damaging vulnerabilities occur. [1]

A. Minimizing Code Complexity

Software is a product of the human intellect and as such all
code inherently contains bugs. Bugs can easily turn into
security vulnerabilities that may someday compromise a
device. To minimize the overall security risk, all software
should be as transparent and as simple as possible. To
understand how code size can affect the number of defects in a
device, we can look at one of the most widely used software
packages: the Linux kernel [2]. At the time of writing, running
the open source “gitstats” tool [3] over the Linux kernel
codebase shows a total of 18 Million (18,349,938) lines of C
code alone included in the kernel repository.

Fig. 1. Lines of Code in Linux Kernel (gitstats)

Assuming that all 18 Million lines of code are compiled as
part of the kernel, how many possible bugs or defects could be
included in those lines of code? Best practices yield an
exploitable defect rate of 0.1 per 1000 lines of code [3][4], in
this case projecting 1,835 possible vulnerabilities.

B. Third Party Software Risks

Most commercial products are not developed by any single
vendor. They are rather composed of hundreds of hardware and
software libraries combined with some unique code to meet the
functional and budgetary constraints of the system. These 3rd
party libraries pose an increasing threat vector for embedded
systems as they may contain intentional or unintentional
exploitable vulnerabilities.

In some cases, this 3rd party software is available in the form
of source code. This is certainly good for transparency and
maintenance, although downstream developers rarely have the
expertise or the resources to perform independent code review
and formal verification. In other cases, such as 3rd party security
or DRM libraries, the software is only available in the form of
object code or binaries. This black box approach precludes
independent code review and forces the adopter to trust with
their product the whole upstream supply chain responsible for
the code base.

If this 3rd party code is assembled without any functional
separation, then a single vulnerability can compromise the
whole system. A new paradigm of a Zero Trust Model is
necessary to protect a system from these new system-internal
threat vectors.

IV. IMPLEMENTING A ZERO TRUST MODEL

A Zero Trust Model in the scenario described above
requires separation between each primary threat vector and the
core function of the system. Envision a simple system which
contains the following elements:

1. An exposed network interface.

2. A set of secrets used to secure the network interface and
validate the system back to a host.

3. A real-time operating system running a set of business
logic functions – tasks.

4. A set of actuators to control external physical systems.

Each one of these elements would likely contain 3rd party
code and thus should be isolated from the other elements. The
exposed networking interface and the secrets used to secure the
network present an additional attack surface as they could be
accessed externally and allow an attacker to penetrate a broader
communication system.

Implementing a Zero Trust Model for this scenario requires
at least four different blocks of separation or containers. As
noted earlier, MMUs allow separation only between user and
kernel functions – several of these blocks are traditionally built
inside a monolithic kernel and thus impossible to separate and
protect using virtual memory and MMU.

A traditional TEE such as ARM’s TrustZone [6] provides
only two areas: a secure world which is typically used to store
secrets and a rich OS world which is typically used to do
everything else. This antiquated design fails to provide enough
blocks to properly implement the proposed Zero-Trust Model.
In fact, it forces the system designer to combine operating
system, network stack and business logic inside a single
“world” where the exploit of any block vulnerabilities results in
the whole system breach [reference].

V. LEVERAGING FREE AND OPEN RISC-V ISA

Oftentimes the implementation of an embedded TEE
requires additional specialized hardware, internal or external to
the main processor. In practice, this makes the TEE
implementation very difficult if not impossible. On the
contrary, the free and open RISC-V ISA specifies most of the
TEE hardware requirements as part of the Privileged specs,
which makes the TEE hardware enablers available out-of-the-
box in any RISC-V processors without the need for additional
specialized hardware.

RISC-V is an open instruction set architecture (ISA) [7][8],
that offers innovative features helpful to a TEE implementation.
Some of these features include privileged execution levels,
physical memory protection (PMP), and user-mode interrupt
delegation. The first helpful feature of the RISC-V cores is
privilege levels. At any time, a RISC-V hardware thread, or
hart, runs at a specific privilege level. Privilege levels include
User/Application (U), Supervisor (S), and Machine (M). There
is a fourth privilege mode for Hypervisor (H) that is reserved in
the current specification. These privilege levels are used to
provide protection between different components of the
software stack (RISCV Privileged v1.10). An exception is
raised if a hart performs operations not permitted by its

www.embedded-world.eu

designated privilege level. A second security built-in feature is
the Physical Memory Protection (PMP) that allows the highest
privilege level (M) to protect specific memory regions and
allow access to them by only threads with a specific privilege
level. This allow the partition of functionality between
execution environments and other functional component
behavior. A third security feature relevant to the TEE
implementation is the “N” extension. It allows the interrupt
controller to delegate - transfer - control directly to a secure
user-level handler rather than processing it at the highest
privilege level in the outer execution environment.

Fig. 2 RISC-V Privilege Levels

To enable these hardware capabilities, we based our study
on the open standard TEE developed by Hex Five Security – a
member of the RISC-V Foundation – which is freely available
on GitHub. Hex Five’s MultiZone Security orchestrates all the
RISC-V security building blocks to support an unlimited
number of equally secure functional blocks called Zones. Each
Zone is intrinsically secure as it runs at the User (U) level: if the
Zone’s code attempts to access any memory-mapped resource
– ram/rom/peripherals – that is not specifically assigned to the
Zone’s policy, the processor itself raises a non-maskable
exception and the access is the-facto prevented.

VI. PUTTING IT ALL TOGETHER

Our practical demonstration system is comprised of a 32-bit
RISC-V core [9], the MultiZone Security TEE [10], the real
time embedded operating system FreeRTOS and some popular
open source libraries for security – WolfSSL - and networking
– picoTCP. Four Zones - security domains - are defined via
policies. Each zone is physically separated and shares no
resources with the others. Inter-zone secure communications
are provided by the MultiZone TEE.

1. Zone number one runs FreeRTOS. Its built-in TCP/IP
stack removed and replaced with an interface to the
messenger infrastructure provided by the TEE. Three
FreeRTOS tasks include: a CLI application providing a
user console, a real-time C application controlling the
movements of a robotic arm, and a PWM application
controlling the fading of a multicolor led based on
interrupts generated via push buttons.

2. Zone number two runs the PicoTCP TCP/IP server [11]
secured with the WolfSSL TLS library [12. This isolate
the remote connectivity attack surface from the real
time operating system.

3. Zone number three runs the Root of Trust. It stores and
provides the secret key needed to secure the TLS link.
Secrets can only be accessed via secure messages.

4. Zone number four runs a bare metal terminal accessible
via UART. This interactive application allows to verify
and benchmark the performance of the TEE.

Fig. 1 - MultiZone system configured to run four independent zones.

 To enable communications between the otherwise
physically separated Zones, their library APIs are wrapped in
MultiZone messages and routed via the secure infrastructure
provided by the TEE. This technique allows quick and robust
integration of the individual library functionality across Zones
without having to rewrite any of their functions.

Performance test are performed via Zone number four and
show median context switch overhead of 120 instructions, and
memory allocation of 2kB RAM and 4kB flash for the
MultiZone TEE. In aggregate this overhead is less than 0.1% of
the CPU and negligible in terms of overall memory resources
available.

A more sophisticated and performant implementation of the
communication interface between operating system and TCP/IP
stack may include dedicated shared split buffers protected via
R/W security policies. This will likely be explored in a future
follow-up research.

VII. CONCLUSION

Embedded device security requires a multi-tiered approach,
where security through separation plays a key role in ensuring
overall system security. Traditional trusted zone architectures
appear antiquated and insufficient to protect the attack surface
introduced by the rapid, unverified integration of 3rd party
libraries.

This research shows how a new Zero-Trust Model is not
only feasible but also well suited to take advantage of modern
processor platforms, such as RISC-V, and open standard
Trusted Execution Environments such as MultiZone.

REFERENCES

[1] Ori Karliner, “FreeRTOS TCP/IP Stack Vulnerabilities Put A Wide
Range of Devices at Risk of Compromise: From Smart Homes to Critical
Infrastructure Systems.” Zimperium, 18 October, 2018.

[2] Torvalds, L. (2019). Linux. Retrieved from GitHub repository,
https://github.com/torvalds/linux

[3] Hokkanen, Heikki. (2019). GitStats. Retrieved from
gitstats.sourceforge.net

[4] McConnel, S. (2004). Code Complete, Second Edition, Redmond, WA,
USA: Microsoft Press. ISBN: 0735619670

[5] Cobb, R.H., & and Mills, H.D. (1990). Engineering Software Under
Statistical Quality Control. IEEE Software, Volume VII (Issue 6), pp. 44-
54.

https://github.com/torvalds/linux
http://gitstats.sourceforge.net/

[6] ARM. (2019). Introducing Arm TrustZone..
https:/developer.arm.com/technologies/trustzone

[7] RISC-V Foundation. (2017). The RISC-V Instruction Set Manual.
Volume II: Privileged Architecture.
https://riscv.org/specifications/privileged-isa/

[8] RISC-V Foundation. (2017). The RISC-V Instruction Set Manual.
Volume I: User-Level ISA. Retrieved from https://riscv.org/specifications

[9] Hex Five Security Inc. “MultiZone Security”, Git Repository, 2019.
https://github.com/hex-five/ MultiZone-sdk

[10] Hex Five Security Inc. “MultiZone Security”. White Paper, 2018.
https://hex-five.com

[11] Altran Intelligent Systems. “picoTCP.” 2018. https://github.com/tass-
belgium/picotcp

[12] WolfSSL, Inc. “Embedded TLS Library.” 2019.
https://www.wolfssl.com/

https://developer.arm.com/technologies/trustzone
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications
https://github.com/hex-five/multizone-sdk
https://hex-five.com/
https://github.com/tass-belgium/picotcp
https://github.com/tass-belgium/picotcp
https://www.wolfssl.com/

