
www.embedded-world.eu

Multi Zone Security for Arm Cortex-M Devices

Sandro Pinto

Universidade do Minho

Guimarães, Portugal

sandro.pinto@dei.uminho.pt

Cesare Garlati

Hex Five Security

Redwood City, CA, USA

cesare.garlati@hex-five.com

Abstract – Developing secure Internet of Things devices is

becoming more and more difficult. Complex functional

requirements are increasingly met with the addition of untrusted

3rd party components. The resulting monolithic firmware presents

vastly larger code base, greater attack surface, and increased

system vulnerability. In addition, cost and low-power

requirements lead to resource-constrained microcontroller

architectures. These lack basic hardware security mechanisms

and the ability to separate multiple trusted applications from less

critical components. A new zero-trust model is required to address

the intrinsic security threat posed by the resulting multi-source

monolithic firmware. In this paper, we propose a novel approach

to embedded security based on hardware-enforced, software-

defined separation of multiple, equally secure, functional domains.

We start by analyzing why the traditional “two-worlds” model is

no longer suitable for modern IoT applications. We then introduce

the concept of a lightweight, multi zone, trusted execution

environment capable of enforcing security and separation for a

multitude of equally-secure functional domains. Finally, we

explain the details of the actual implementation of this model in

Arm Cortex-M7 processors.

Keywords— IoT, Security, Isolation, Separation, Trusted

Execution Environment, TEE, Firmware, Arm, Cortex-M,

TrustZone.

I. INTRODUCTION

The Internet of Things (IoT) is comprised of billions of
interconnected devices that, by definition, are exposed to remote
attack – potentially resulting in the most damaging type of cyber
threats: distributed denial of service or DDOS. While early
design concerns were mostly related to connectivity and
interoperability, a multitude of recent high-profile cyberattacks
has shown that the success of this new Internet era is heavily
dependent on the trust and the security built into these devices
[1, 2].

However, the attack surface in IoT devices is growing
exponentially as sophisticated connectivity requirements are
increasingly met with the integration of a multitude of 3rd party
software libraries, open source real-time operating systems, and
proprietary black-box binaries – i.e. peripherals drivers [2]. The
problem is exacerbated by the lack of simple and reliable
mechanisms to enforce separation among these multi-source
mixed-criticality components. This inexorably leads to unsafe
systems that indiscriminately run all software components at the
same level of privilege sharing the same memory space and

peripherals. Due to the monolithic nature of the firmware
embedded into these systems, the exploit of a vulnerability in
one low-criticality component is usually enough to lead to
privilege escalation, lateral movement to higher-criticality
modules, and to complete system failure – see for example the
recent high-profile attacks to two of the most widespread
embedded operating system, FreeRTOS and VxWorks, that
were compromised by exploiting vulnerabilities in network-
related components [3, 4].

More expensive and power-hungry processors provide some
features intended to control access to memory-mapped resources
– i.e. virtual memory and Memory Management Unit (MMU).
However, these mechanisms are far from optimal as they present
significant drawbacks with regard to the implementation of
virtual memory management and MMU. Firstly, they require
more complex hardware (e.g., silicon gates and TLBs) and
software (e.g., 2-stage translation tables) that add to cost and
power consumption. Secondly, the additional complex software
layers necessary to drive the MMU vastly increase the total
codebase (TCB) of the system, resulting in larger attack surface
and ultimately in less secure systems. As all products of the
human intellect, software is intrinsically subject to defects and
statistically likely to present unexpected behaviors – generally
referred as “bugs”. Thus, the resulting increase in TCB
inevitably leads to a higher number of potential vulnerabilities
and in the end to a less resilient system. Resource-constrained
microcontrollers used in IoT applications typically have
simplified versions of the MMU – i.e. Memory Protection Unit
(MPU) – that are equally exposed to the complexity of the
additional software required to operate them – in Brandon
Lewis’ words: “the design complexity associated with properly
implementing these technologies often results in them not being
used at all” [5].

We reject the very idea that simply throwing more silicon
area at the security problem - as in adding more hardware
security blocks - makes any system more “secure”. In fact, we
argue the exact opposite: when it is comes to security “less is
more”. Simpler hardware means simpler software, less lines of
code, statistically less defects, and in the end more resilient
systems. Traditional Trusted Execution Environments that
“carve-out” one safe area across the various hardware
components - commonly referred as the “secure world” – have
been available in the market since 2004 but never achieved
widespread adoption outside mobile telephony because of two

significant limitations. Firstly, they rely on proprietary hardware
extensions typically not available across all vendors and
platforms. Secondly, they are admittedly overly complex, very
difficult to understand, and even more difficult to properly
implement across disparate silicon architectures. Finally, over
the last few years, confidence in these systems has been shaken
due to the systematic discovery of many critical vulnerabilities
[6, 7]. For example, a recent vulnerability study of popular
commercial TrustZone-assisted TEE systems has revealed that
these systems have (i) a long history of critical implementation
bugs, (ii) numerous architectural deficiencies, and (iii) important
hardware properties that are overlooked [6].

In this paper, we propose a novel approach to hardware
security based on hardware-enforced, software-defined
separation of multiple, equally secure, functional domains. We
start by explaining why the “secure world” model is no longer
enough to meet the requirements of modern IoT applications and
why a new zero trust model is required. Then, we share the
details of the research work underpinning the development of
the first commercial multi zone TEE for Arm(v7-M) specifically
designed to bring security and separation to resource-
constrained Cortex-M devices. Finally, we present a system
evaluation and a reference implementation targeting an industry
widespread Cortex-M7 microprocessor.

II. A NEW ZERO TRUST MODEL

The vast majority of the electronic devices in the market are
not completely developed in-house by any single vendor. They
are rather composed of a myriad of 3rd party hardware and
software components combined with some proprietary IP to
meet the specific functional and budgetary constraints of the
particular product. Third party software components are often
available in the form opaque object code libraries or black-box
binaries. The lack of transparency poses a significant threat
vector for embedded firmware, as the product may ship with
intentional or unintentional vulnerabilities, leading to exploit
and attacks – see Cisco routers “unauthorized” firmware
incidents. When the 3rd party code is linked into the monolithic
firmware image without any functional separation, a single
defect or vulnerability can compromise the whole system. We
believe this practice is flawed at its core. All systems
components, and especially the ones provided by 3rd parties,
should be assumed defective and therefore untrusted. This leads
to a new design paradigm based on the concept of Zero Trust:
no single functional block should have indiscriminate access to
all system resources and, therefore, no single functional block
should be able to intentionally or unintentionally compromise
the CIA - Confidentiality, Integrity, Availability - of the whole
system.

The Zero Trust Model described above requires hardware-
enforced separation between each primary threat vector and the
core of the system. If we take into consideration the basic
functional blocks typically present in embedded connected
devices (e.g., smart sensor and IoT endpoints), we can typically
identify the following elements: (i) a Real Time Operating
System (RTOS) running a set of software threads (tasks); (ii) a
set of sensors and actuators to control external physical systems;
(iii) a network interface exposed to remote attack; and (iv) a set
of cryptographic algorithms used to secure data at rest and in

motion and to provide attention services to a host. Each of these
elements is likely to contain 3rd party code. It should be
untrusted and isolated from the other parts of the system.

Implementing the Zero Trust Model above requires at least four
different blocks of functional separation - or “zones”. MMUs
allow separation only between user and kernel functions –
several of these blocks are traditionally built inside a monolithic
infrastructure and thus very difficult to separate and protect
using virtual memory and MMU. In addition, traditional TEEs
based on hardware primitives such as Arm TrustZone are
designed to isolate only one functional block. This is commonly
referred as the “secure world” and typically used to control
access to cryptographic keys and security-critical operations
such as secure boot. The main RTOS and all its tasks run in the
remaining single non-secure world – with no mechanism left for
further separation. The intrinsic binary limitation of this
antiquated architecture simply fails to provide enough levels of
separation for a modern Zero Trust design.

III. LEVERAGING ARMV7-M HARDWARE PRIMITIVES

Oftentimes the implementation of an embedded TEE
requires additional specialized hardware, internal or external to
the application processor. In practice, this makes the TEE
implementation very difficult and prone to defects and
vulnerabilities. The Armv7-M architecture specifies a set of
hardware security primitives that make the TEE hardware
enablers available out-of-the-box in almost all Cortex-M
microcontrollers – with the notable exception of the tiny Cortex-
M0.

A first group of security primitive available in Armv7-M cores
is represented by the privilege levels. At any time, an Armv7-M
MCU runs at a specific mode and privilege level. According to
the Armv7-M Architecture Reference Manual, Cortex-M
processors can have run in two modes: Handler and Thread.
While the Handler mode is always privileged, the Thread mode
can have privileged and unprivileged access levels (Fig. 1). The
Handler mode is intended to execute exception handling code,
and a bit more privileged than the Privileged Thread mode, i.e.
some registers are just accessible in Handler mode (e.g., IPSR).
The separation of privileged and unprivileged access levels
allows for the development of more robust systems. It provides
a basic security mechanism by controlling memory accesses to
specific regions.

A second built-in security feature is the memory protection
unit (MPU). It is optional but widely available in all Cortex-
M0+/M3/M4/M7 processors. The MPU is a programmable
hardware block that can be used to define permissions to specific
memory regions according to privilege levels. This allows the
partitioning of functionality between execution environments
and the misuse of some particular resources - i.e. define RAM

Fig. 1 - Armv7-M operation modes and privileged levels

www.embedded-world.eu

space as non-executable (eXecute Never, XN) to limit buffer
misuse and prevent code injection attacks.

IV. IMPLEMENTATION CHALLENGES ON ARMV7-M

TEEs aim at enforcing hardware isolation of multiple
software components within the system while preserving
Confidentiality, Integrity, and Availability - i.e., the CIA triad.
A modern TEE must provide [9]: (i) isolation of code, data,
interrupts, and other resources; (ii) preemptive temporal
separation; and (iii) trap and emulate functionality for privileged
instructions to allow transparent execution of legacy
applications, which are typically not designed for running in a
secure unprivileged mode. TEE requirements were probably not
a major design criteria for the Armv7-M architecture. As a
result, the TEE designer needs to address a few specific
shortcomings.

NAPOT MPU Regions. The MPU implemented in Armv7

Cortex-M microcontrollers can support either eight or sixteen

programmable memory regions, each with their programmable

starting addresses (MPU_RBAR) as well as sizes and attributes

(MPU_RASR). For a proper TEE implementation, we

identified and addressed two limitations in the MPU design: (i)

the MPU region size is encoded through a set of fixed naturally

aligned power of two (NAPOT) ranges from 32 Byte to 4 GiB;

and (ii) the base address of the region must be aligned to the

size of the region. For example, for a region size of 32 KiB, the

base address must be aligned to 15 (i.e., base address [31:15]).

From a system developer perspective, this imposes hard

limitations that either lead to wasting of precious memory space

or, even worse, to improper security settings that leave

unprotected “holes” extremely difficult to detect and correct.

Special Privileged Instructions. The Armv7-M ISA defines a

well-defined set of privileged instructions. These instructions

are intended to be executed at the higher level of privilege (i.e.,

Privileged Thread or Privileged Handler modes) and typically

used to access special registers that control for example

interrupt settings and power-down operations. Fig. 2 lists the

identified privileged instructions from the Armv7-M ISA. The

main problem with these instructions is that when executed in

Unprivileged Thread mode, they fail silently instead of raising

privilege violation exceptions. This behavior constitutes a

significant issue for TEEs aiming at providing complete trap

and emulation support for code designed to operate in

unprotected memory space.

Imprecise Bus Faults. The Armv7-M architecture supports a

predefined 32-bit address space, with subdivision for code,

data, peripherals, and regions for on-chip and off-chip

resources. According to the system address map, there is a

region, so-called System area (0xE000_0000 - 0xFFFF_FFFF),

which is reserved for system-level use. Within this predefined

512MiB range, there is a special 4KiB subregion named System

Control Space (SCS), which provides registers for system

configuration and status reporting and control. For example, the

System Timer (SysTick) and the Nested Vectored Interrupt

Controller (NVIC) are mapped to this 4KiB memory area. As a

memory-mapped area, read and write operations to the SCS

registers are performed through normal load and store

instructions (and not through MSR and MRS instructions).

However, the full System region is special in the sense it is a

privileged memory area where MPU policies are not enforced.

This means that even if the MPU is properly configured to

prevent unprivileged access to this region, unprivileged read

and write operations will trigger Bus faults, instead of Memory

Management (MemManage) faults. The issue with Bus faults is

that, depending on the specific microarchitectural

implementation, they might raise imprecise exceptions – in

contrast to MemManage faults that are always precise.

Imprecise faults are difficult and expensive to handle as the core

throws the Bus fault some cycles later, without recording the

exact address and/or instruction that violated the privileged

memory and that needs to be emulated.

V. PROPOSED MULTI ZONE TEE FOR ARM(V7-M)

Fig. 3 shows a multi zone reference implementation for

Arm(v7-M) processors. The multi zone separation kernel runs

at the highest privilege level (Privileged Handler Mode).

Application code and interrupt handlers run in separated zones

at the lowest level of privilege (Unprivileged Thread mode).

TEE Configurator. To make the system more secure, we limit

the possibility for human error by encapsulating and hiding the

whole complexity of managing the underlying hardware blocks

[8]. The only interaction of the system developer with the TEE

is a simple flat format policy definition file. No coding,

compilation, linking and debugging is necessary – and in fact

even allowed. Instead, we provide a simple command line

utility to be used at the last step of the development cycle in the

form of a JAR file toolchain extension. This small utility is

written in java to make it portable across any operating system

and development environment. The configurator utility

combines the fully linked binaries of each zone with the pre-

built TEE runtime, applies the security and separation policies

defined in the configuration file, and produces the secure boot

firmware image for target upload. In addition, the configurator

provides (i) binary translation to address the system limitations

highlighted in Section IV, (ii) full support for trap and

emulation without modifying existing source code, and (iii) a

Instruction Description

MRS

MSR

CPSIE

CPSID

WFI

WFE

Read from Special register (e.g., PRIMASK)

Write to Special register (e.g., PRIMASK)

Enable Interrupts/Faults

Disable Interrupts/Faults

Wait for Interrupt

Wait for Event

Fig. 2 - List of privileged instructions that do not cause any privileged

violation exception when executed in Unprivileged Thread mode

sophisticated MPU optimization algorithm that allows any user-

defined range and size of memory mapped resources.

TEE Secure Boot Process. The TEE implements a 2-stage

secure boot loader to verify the integrity and authenticity of the

firmware image (SHA-256) and to minimize runtime memory

footprint and target attack surface.

TEE Separation Kernel. At runtime, the tiny separation kernel

provides a formally verifiable, self-contained facility for time

and spatial isolation of multiple secure threads – zones [9]. The

kernel supports an unlimited number of separated TEEs, called

zones. Through the policy definition file, the system designer

assigns a set of resources to each zone. These include any

memory mapped resource such as RAM, ROM, I/O, interrupts,

and relative read/write/execute access policies. The TEE kernel

implements a preemptive real-time scheduler suitable to safety-

critical applications with configurable round-robin and/or

cooperative scheduling policies. The kernel also provides

independent soft timers for each zone consistent with the

Armv7-M System Timer (a.k.a. SysTick). There is full support

for low-latency vectored interrupts (NVIC) and wait for

interrupt (WFI) low power / suspend mode. A unique security

aspect of the multi zone TEE is the ability to securely execute

interrupts handlers in unprivileged Thread mode in the context

of the mapped zone. To provide complete and transparent

support for unmodified binaries, the kernel implements trap &

emulation for most privileged system registers – including

those accessible through privileged MRS and MSR instructions

(e.g., MSP, BASEPRI) and those that are memory-mapped

(e.g., VTOR, ICSR, CFSR in the SCS region).

TEE API. Trap and emulation is great for software quality,

development costs, and time to market as it doesn’t require any

change to existing software. However, this technique may have

a slight performance impact on throughput and interrupt

latency. To optimize throughput and latency, a completely

optional API is available to wrap privileged instructions into

functionally equivalent TEE calls. The API is provided in the

form of a C header file and uniquely comprised of small and

efficient inline assembly code – no library or stack overhead

required.

TEE Messenger. The TEE runtime provides a self-contained

facility for inter-zone secure communications. It allows zones

to exchange secure messages – protected bytes streams - on a

non-shared memory basis. The TEE API offers two system calls

for sending and receiving messages – ECALL_SEND and

ECALL_RECV.

VI. REFERENCE APPLICATION AND EVALUATION

Fig. 3 shows our reference application. The proof of concept
controls the movements of a small robotic arm via a local
terminal console. It includes also a set of built-in bare-metal
commands to test security and separation of the system and to
measure performance overhead and interrupt latency. Zone1
connects to a PC terminal via serial port (UART) to demonstrate
peripheral mapping, secure user-mode drivers, enforcement of
isolation policies, performance statistics, soft-timer, and inter-
zone communications. At the same time, Zone2 blinks a LED
and interfaces with local buttons to demonstrate secure user-
level interrupt handling and secure messaging. Zone3 operates
the robotic arm connected via GPIO. Commands are received
from Zone1 and the status of the robot reported back via secure
messaging.

The multi zone TEE was evaluated on a Microchip SAM E70

Xplained Evaluation Kit. The Microchip SAM E70 is equipped

with a Cortex-M7 ATSAME70Q21 processor clocked at

Fig. 3 - Multi Zone Trusted Execution Environment - Reference Implementation Architecture.

www.embedded-world.eu

240MHz. In addition to the extensive tests for security,

separation, and reliability accessible via zone #1, we measured

TCB size and performance overhead.

TCB Size. To minimize the attack surface and to allow for

formal verification the multi zone runtime is completely written

in assembly and self-contained with zero dependencies on

compiler libraries - typical of system level software written in C.

The TCB of the system comprises a total amount of (approx.)

2.5KiB. At least one order of magnitude smaller than any system

level software documented in publicly available literature. On

the basis of the proven correlation between TCB and number of

defects, we can safely conclude that the proposed TEE is at least

ten times less exposed to vulnerabilities or more simplistically

“ten times more secure”.

Performance Overhead. To assess the performance overhead

we measured zone context switch time. For the system under

test configured for four zones, a complete context switch takes

146 clock cycles – or 608ns @240MHz. For a system

configured with a preemption time of 10ms, the worst-case

performance overhead amounts to 0.006%, which is practically

neglectable in any real world application.

REFERENCES

[1] A. Sadeghi, C. Wachsmann and M. Waidner, "Security and privacy

challenges in industrial Internet of Things," 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), San Francisco, CA, 2015.

[2] Chris Conlon and Cesare Garlati. “A New Zero-Trust Model for Securing
Embedded Systems”. In Proceedings of the Embedded World
Conference, Nuremberg, Germany, 2019.

[3] Ori Karliner, “FreeRTOS TCP/IP Stack Vulnerabilities Put A Wide
Range of Devices at Risk of Compromise: From Smart Homes to Critical
Infrastructure Systems.” Zimperium, 18 October, 2018.

[4] Lily Hay Newman, “An Operating System Bug Exposes 200 Million
Critical Devices.” Wired, 29 July, 2019.

[5] Brandon Lewis, “Secure IoT devices from the microcontroller, up.”
Embedded Computing, 18 July, 2018.

[6] David Cerdeira, Nuno Santos, Pedro Fonseca, Sandro Pinto. " SoK:
Understanding the Prevailing Security Vulnerabilities in TrustZone-
assisted TEE Systems." IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, USA, 2020.

[7] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D.
Garcia, and Frank Piessens. “A Tale of Two Worlds: Assessing the
Vulnerability of Enclave Shielding Runtimes”. ACM Conference on
Computer and Communications Security (CCS), NY, USA, 2019.

[8] Hex Five Security Inc. “MultiZone® Security SDK for Arm Cortex-M”.
GitHub, 2020. [Online]: https://github.com/hex-five/multizone-sdk-arm

[9] Cesare Garlati and Sandro Pinto. “A Clean Slate Approach to Embedded
Linux Security: RISC-V Enclaves”. In Proceedings of the Embedded
World Conference, Nuremberg, Germany, 2020.

