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Abstract – Developing secure Internet of Things devices is 

becoming more and more difficult. Complex functional 

requirements are increasingly met with the addition of untrusted 

3rd party components. The resulting monolithic firmware presents 

vastly larger code base, greater attack surface, and increased 

system vulnerability. In addition, cost and low-power 

requirements lead to resource-constrained microcontroller 

architectures. These lack basic hardware security mechanisms 

and the ability to separate multiple trusted applications from less 

critical components. A new zero-trust model is required to address 

the intrinsic security threat posed by the resulting multi-source 

monolithic firmware. In this paper, we propose a novel approach 

to embedded security based on hardware-enforced, software-

defined separation of multiple, equally secure, functional domains. 

We start by analyzing why the traditional “two-worlds” model is 

no longer suitable for modern IoT applications. We then introduce 

the concept of a lightweight, multi zone, trusted execution 

environment capable of enforcing security and separation for a 

multitude of equally-secure functional domains. Finally, we 

explain the details of the actual implementation of this model in 

Arm Cortex-M7 processors. 

Keywords— IoT, Security, Isolation, Separation, Trusted 

Execution Environment, TEE, Firmware, Arm, Cortex-M, 
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I.  INTRODUCTION  

The Internet of Things (IoT) is comprised of billions of 
interconnected devices that, by definition, are exposed to remote 
attack – potentially resulting in the most damaging type of cyber 
threats: distributed denial of service or DDOS. While early 
design concerns were mostly related to connectivity and 
interoperability, a multitude of recent high-profile cyberattacks 
has shown that the success of this new Internet era is heavily 
dependent on the trust and the security built into these devices 
[1, 2].  

However, the attack surface in IoT devices is growing 
exponentially as sophisticated connectivity requirements are 
increasingly met with the integration of a multitude of 3rd party 
software libraries, open source real-time operating systems, and 
proprietary black-box binaries – i.e. peripherals drivers [2]. The 
problem is exacerbated by the lack of simple and reliable 
mechanisms to enforce separation among these multi-source 
mixed-criticality components. This inexorably leads to unsafe 
systems that indiscriminately run all software components at the 
same level of privilege sharing the same memory space and 

peripherals. Due to the monolithic nature of the firmware 
embedded into these systems, the exploit of a vulnerability in 
one low-criticality component is usually enough to lead to 
privilege escalation, lateral movement to higher-criticality 
modules, and to complete system failure – see for example the 
recent high-profile attacks to two of the most widespread 
embedded operating system, FreeRTOS and VxWorks, that 
were compromised by exploiting vulnerabilities in network-
related components [3, 4]. 

More expensive and power-hungry processors provide some 
features intended to control access to memory-mapped resources 
– i.e. virtual memory and Memory Management Unit (MMU). 
However, these mechanisms are far from optimal as they present 
significant drawbacks with regard to the implementation of 
virtual memory management and MMU. Firstly, they require 
more complex hardware (e.g., silicon gates and TLBs) and 
software (e.g., 2-stage translation tables) that add to cost and 
power consumption. Secondly, the additional complex software 
layers necessary to drive the MMU vastly increase the total 
codebase (TCB) of the system, resulting in larger attack surface 
and ultimately in less secure systems. As all products of the 
human intellect, software is intrinsically subject to defects and 
statistically likely to present unexpected behaviors – generally 
referred as “bugs”. Thus, the resulting increase in TCB 
inevitably leads to a higher number of potential vulnerabilities 
and in the end to a less resilient system. Resource-constrained 
microcontrollers used in IoT applications typically have 
simplified versions of the MMU – i.e. Memory Protection Unit 
(MPU) – that are equally exposed to the complexity of the 
additional software required to operate them – in Brandon 
Lewis’ words: “the design complexity associated with properly 
implementing these technologies often results in them not being 
used at all” [5]. 

We reject the very idea that simply throwing more silicon 
area at the security problem - as in adding more hardware 
security blocks - makes any system more “secure”. In fact, we 
argue the exact opposite: when it is comes to security “less is 
more”. Simpler hardware means simpler software, less lines of 
code, statistically less defects, and in the end more resilient 
systems. Traditional Trusted Execution Environments that 
“carve-out” one safe area across the various hardware 
components - commonly referred as the “secure world” – have 
been available in the market since 2004 but never achieved 
widespread adoption outside mobile telephony because of two 



significant limitations. Firstly, they rely on proprietary hardware 
extensions typically not available across all vendors and 
platforms. Secondly, they are admittedly overly complex, very 
difficult to understand, and even more difficult to properly 
implement across disparate silicon architectures. Finally, over 
the last few years, confidence in these systems has been shaken 
due to the systematic discovery of many critical vulnerabilities 
[6, 7]. For example, a recent vulnerability study of popular 
commercial TrustZone-assisted TEE systems has revealed that 
these systems have (i) a long history of critical implementation 
bugs, (ii) numerous architectural deficiencies, and (iii) important 
hardware properties that are overlooked [6].    

In this paper, we propose a novel approach to hardware 
security based on hardware-enforced, software-defined 
separation of multiple, equally secure, functional domains. We 
start by explaining why the “secure world” model is no longer 
enough to meet the requirements of modern IoT applications and 
why a new zero trust model is required. Then, we share the 
details of the research work underpinning the development of 
the first commercial multi zone TEE for Arm(v7-M) specifically 
designed to bring security and separation to resource-
constrained Cortex-M devices. Finally, we present a system 
evaluation and a reference implementation targeting an industry 
widespread Cortex-M7 microprocessor. 

II. A NEW ZERO TRUST MODEL 

The vast majority of the electronic devices in the market are 
not completely developed in-house by any single vendor. They 
are rather composed of a myriad of 3rd party hardware and 
software components combined with some proprietary IP to 
meet the specific functional and budgetary constraints of the 
particular product. Third party software components are often 
available in the form opaque object code libraries or black-box 
binaries. The lack of transparency poses a significant threat 
vector for embedded firmware, as the product may ship with 
intentional or unintentional vulnerabilities, leading to exploit 
and attacks – see Cisco routers “unauthorized” firmware 
incidents. When the 3rd party code is linked into the monolithic 
firmware image without any functional separation, a single 
defect or vulnerability can compromise the whole system. We 
believe this practice is flawed at its core. All systems 
components, and especially the ones provided by 3rd parties, 
should be assumed defective and therefore untrusted. This leads 
to a new design paradigm based on the concept of Zero Trust: 
no single functional block should have indiscriminate access to 
all system resources and, therefore, no single functional block 
should be able to intentionally or unintentionally compromise 
the CIA - Confidentiality, Integrity, Availability - of the whole 
system. 

The Zero Trust Model described above requires hardware-
enforced separation between each primary threat vector and the 
core of the system. If we take into consideration the basic 
functional blocks typically present in embedded connected 
devices (e.g., smart sensor and IoT endpoints), we can typically 
identify the following elements: (i) a Real Time Operating 
System (RTOS) running a set of software threads (tasks); (ii) a 
set of sensors and actuators to control external physical systems; 
(iii) a network interface exposed to remote attack; and (iv) a set 
of cryptographic algorithms used to secure data at rest and in 

motion and to provide attention services to a host. Each of these 
elements is likely to contain 3rd party code. It should be 
untrusted and isolated from the other parts of the system.  

Implementing the Zero Trust Model above requires at least four 
different blocks of functional separation - or “zones”. MMUs 
allow separation only between user and kernel functions – 
several of these blocks are traditionally built inside a monolithic 
infrastructure and thus very difficult to separate and protect 
using virtual memory and MMU. In addition, traditional TEEs 
based on hardware primitives such as Arm TrustZone are 
designed to isolate only one functional block. This is commonly 
referred as the “secure world” and typically used to control 
access to cryptographic keys and security-critical operations 
such as secure boot. The main RTOS and all its tasks run in the 
remaining single non-secure world – with no mechanism left for 
further separation. The intrinsic binary limitation of this 
antiquated architecture simply fails to provide enough levels of 
separation for a modern Zero Trust design.  

III. LEVERAGING ARMV7-M HARDWARE PRIMITIVES 

Oftentimes the implementation of an embedded TEE 
requires additional specialized hardware, internal or external to 
the application processor. In practice, this makes the TEE 
implementation very difficult and prone to defects and 
vulnerabilities. The Armv7-M architecture specifies a set of 
hardware security primitives that make the TEE hardware 
enablers available out-of-the-box in almost all Cortex-M 
microcontrollers – with the notable exception of the tiny Cortex-
M0. 

A first group of security primitive available in Armv7-M cores 
is represented by the privilege levels. At any time, an Armv7-M 
MCU runs at a specific mode and privilege level. According to 
the Armv7-M Architecture Reference Manual, Cortex-M 
processors can have run in two modes: Handler and Thread. 
While the Handler mode is always privileged, the Thread mode 
can have privileged and unprivileged access levels (Fig. 1). The 
Handler mode is intended to execute exception handling code, 
and a bit more privileged than the Privileged Thread mode, i.e. 
some registers are just accessible in Handler mode (e.g., IPSR). 
The separation of privileged and unprivileged access levels 
allows for the development of more robust systems. It provides 
a basic security mechanism by controlling memory accesses to 
specific regions.  

A second built-in security feature is the memory protection 
unit (MPU). It is optional but widely available in all Cortex-
M0+/M3/M4/M7 processors. The MPU is a programmable 
hardware block that can be used to define permissions to specific 
memory regions according to privilege levels. This allows the 
partitioning of functionality between execution environments 
and the misuse of some particular resources - i.e. define RAM 

 

Fig. 1 - Armv7-M operation modes and privileged levels 
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space as non-executable (eXecute Never, XN) to limit buffer 
misuse and prevent code injection attacks.  

IV. IMPLEMENTATION CHALLENGES ON ARMV7-M 

TEEs aim at enforcing hardware isolation of multiple 
software components within the system while preserving 
Confidentiality, Integrity, and Availability - i.e., the CIA triad. 
A modern TEE must provide [9]: (i) isolation of code, data, 
interrupts, and other resources; (ii) preemptive temporal 
separation; and (iii) trap and emulate functionality for privileged 
instructions to allow transparent execution of legacy 
applications, which are typically not designed for running in a 
secure unprivileged mode. TEE requirements were probably not 
a major design criteria for the Armv7-M architecture. As a 
result, the TEE designer needs to address a few specific 
shortcomings. 

 
NAPOT MPU Regions. The MPU implemented in Armv7 

Cortex-M microcontrollers can support either eight or sixteen 

programmable memory regions, each with their programmable 

starting addresses (MPU_RBAR) as well as sizes and attributes 

(MPU_RASR). For a proper TEE implementation, we 

identified and addressed two limitations in the MPU design: (i) 

the MPU region size is encoded through a set of fixed naturally 

aligned power of two (NAPOT) ranges from 32 Byte to 4 GiB; 

and (ii) the base address of the region must be aligned to the 

size of the region. For example, for a region size of 32 KiB, the 

base address must be aligned to 15 (i.e., base address [31:15]). 

From a system developer perspective, this imposes hard 

limitations that either lead to wasting of precious memory space 

or, even worse, to improper security settings that leave 

unprotected “holes” extremely difficult to detect and correct. 

  

Special Privileged Instructions. The Armv7-M ISA defines a 

well-defined set of privileged instructions. These instructions 

are intended to be executed at the higher level of privilege (i.e., 

Privileged Thread or Privileged Handler modes) and typically 

used to access special registers that control for example 

interrupt settings and power-down operations. Fig. 2 lists the 

identified privileged instructions from the Armv7-M ISA. The 

main problem with these instructions is that when executed in 

Unprivileged Thread mode, they fail silently instead of raising 

privilege violation exceptions. This behavior constitutes a 

significant issue for TEEs aiming at providing complete trap 

and emulation support for code designed to operate in 

unprotected memory space. 

 

Imprecise Bus Faults. The Armv7-M architecture supports a 

predefined 32-bit address space, with subdivision for code, 

data, peripherals, and regions for on-chip and off-chip 

resources. According to the system address map, there is a 

region, so-called System area (0xE000_0000 - 0xFFFF_FFFF), 

which is reserved for system-level use. Within this predefined 

512MiB range, there is a special 4KiB subregion named System 

Control Space (SCS), which provides registers for system 

configuration and status reporting and control. For example, the 

System Timer (SysTick) and the Nested Vectored Interrupt 

Controller (NVIC) are mapped to this 4KiB memory area. As a 

memory-mapped area, read and write operations to the SCS 

registers are performed through normal load and store 

instructions (and not through MSR and MRS instructions). 

However, the full System region is special in the sense it is a 

privileged memory area where MPU policies are not enforced. 

This means that even if the MPU is properly configured to 

prevent unprivileged access to this region, unprivileged read 

and write operations will trigger Bus faults, instead of Memory 

Management (MemManage) faults. The issue with Bus faults is 

that, depending on the specific microarchitectural 

implementation, they might raise imprecise exceptions – in 

contrast to MemManage faults that are always precise. 

Imprecise faults are difficult and expensive to handle as the core 

throws the Bus fault some cycles later, without recording the 

exact address and/or instruction that violated the privileged 

memory and that needs to be emulated. 

V. PROPOSED MULTI ZONE TEE FOR ARM(V7-M) 

Fig. 3 shows a multi zone reference implementation for 

Arm(v7-M) processors. The multi zone separation kernel runs 

at the highest privilege level (Privileged Handler Mode). 

Application code and interrupt handlers run in separated zones 

at the lowest level of privilege (Unprivileged Thread mode).  

 

TEE Configurator. To make the system more secure, we limit 

the possibility for human error by encapsulating and hiding the 

whole complexity of managing the underlying hardware blocks 

[8]. The only interaction of the system developer with the TEE 

is a simple flat format policy definition file. No coding, 

compilation, linking and debugging is necessary – and in fact 

even allowed. Instead, we provide a simple command line 

utility to be used at the last step of the development cycle in the 

form of a JAR file toolchain extension. This small utility is 

written in java to make it portable across any operating system 

and development environment. The configurator utility 

combines the fully linked binaries of each zone with the pre-

built TEE runtime, applies the security and separation policies 

defined in the configuration file, and produces the secure boot 

firmware image for target upload. In addition, the configurator 

provides (i) binary translation to address the system limitations 

highlighted in Section IV, (ii) full support for trap and 

emulation without modifying existing source code, and (iii) a 

Instruction Description 

MRS 

MSR 

CPSIE 

CPSID 

WFI 

WFE 

Read from Special register (e.g., PRIMASK) 

Write to Special register (e.g., PRIMASK) 

Enable Interrupts/Faults 

Disable Interrupts/Faults 

Wait for Interrupt 

Wait for Event 

Fig. 2 - List of privileged instructions that do not cause any privileged 

violation exception when executed in Unprivileged Thread mode 



sophisticated MPU optimization algorithm that allows any user-

defined range and size of memory mapped resources.   
 

TEE Secure Boot Process. The TEE implements a 2-stage 

secure boot loader to verify the integrity and authenticity of the 

firmware image (SHA-256) and to minimize runtime memory 

footprint and target attack surface. 

 

TEE Separation Kernel. At runtime, the tiny separation kernel 

provides a formally verifiable, self-contained facility for time 

and spatial isolation of multiple secure threads – zones [9]. The 

kernel supports an unlimited number of separated TEEs, called 

zones. Through the policy definition file, the system designer 

assigns a set of resources to each zone. These include any 

memory mapped resource such as RAM, ROM, I/O, interrupts, 

and relative read/write/execute access policies. The TEE kernel 

implements a preemptive real-time scheduler suitable to safety-

critical applications with configurable round-robin and/or 

cooperative scheduling policies. The kernel also provides 

independent soft timers for each zone consistent with the 

Armv7-M System Timer (a.k.a. SysTick). There is full support 

for low-latency vectored interrupts (NVIC) and wait for 

interrupt (WFI) low power / suspend mode. A unique security 

aspect of the multi zone TEE is the ability to securely execute 

interrupts handlers in unprivileged Thread mode in the context 

of the mapped zone. To provide complete and transparent 

support for unmodified binaries, the kernel implements trap & 

emulation for most privileged system registers – including 

those accessible through privileged MRS and MSR instructions 

(e.g., MSP, BASEPRI) and those that are memory-mapped 

(e.g., VTOR, ICSR, CFSR in the SCS region).  

 

TEE API. Trap and emulation is great for software quality, 

development costs, and time to market as it doesn’t require any 

change to existing software. However, this technique may have 

a slight performance impact on throughput and interrupt 

latency. To optimize throughput and latency, a completely 

optional API is available to wrap privileged instructions into 

functionally equivalent TEE calls. The API is provided in the 

form of a C header file and uniquely comprised of small and 

efficient inline assembly code – no library or stack overhead 

required.  

 

TEE Messenger. The TEE runtime provides a self-contained 

facility for inter-zone secure communications. It allows zones 

to exchange secure messages – protected bytes streams - on a 

non-shared memory basis. The TEE API offers two system calls 

for sending and receiving messages – ECALL_SEND and 

ECALL_RECV.  
 

VI. REFERENCE APPLICATION AND EVALUATION 

Fig. 3 shows our reference application. The proof of concept 
controls the movements of a small robotic arm via a local 
terminal console. It includes also a set of built-in bare-metal 
commands to test security and separation of the system and to 
measure performance overhead and interrupt latency. Zone1 
connects to a PC terminal via serial port (UART) to demonstrate 
peripheral mapping, secure user-mode drivers, enforcement of 
isolation policies, performance statistics, soft-timer, and inter-
zone communications. At the same time, Zone2 blinks a LED 
and interfaces with local buttons to demonstrate secure user-
level interrupt handling and secure messaging. Zone3 operates 
the robotic arm connected via GPIO. Commands are received 
from Zone1 and the status of the robot reported back via secure 
messaging. 

The multi zone TEE was evaluated on a Microchip SAM E70 

Xplained Evaluation Kit. The Microchip SAM E70 is equipped 

with a Cortex-M7 ATSAME70Q21 processor clocked at 

 

Fig. 3 - Multi Zone Trusted Execution Environment - Reference Implementation Architecture. 
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240MHz. In addition to the extensive tests for security, 

separation, and reliability accessible via zone #1, we measured 

TCB size and performance overhead. 

 

TCB Size. To minimize the attack surface and to allow for 

formal verification the multi zone runtime is completely written 

in assembly and self-contained with zero dependencies on 

compiler libraries - typical of system level software written in C. 

The TCB of the system comprises a total amount of (approx.) 

2.5KiB. At least one order of magnitude smaller than any system 

level software documented in publicly available literature. On 

the basis of the proven correlation between TCB and number of 

defects, we can safely conclude that the proposed TEE is at least 

ten times less exposed to vulnerabilities or more simplistically 

“ten times more secure”.  

 

Performance Overhead. To assess the performance overhead 

we measured zone context switch time. For the system under 

test configured for four zones, a complete context switch takes 

146 clock cycles – or 608ns @240MHz. For a system 

configured with a preemption time of 10ms, the worst-case 

performance overhead amounts to 0.006%, which is practically 

neglectable in any real world application. 
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