Hypervisors in Embedded Systems: Applications and Architectures

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Abstract — As microprocessor architectures have evolved with direct hardware support for virtualization, hypervisor software has become not just practical in embedded systems, but present in many commercials applications. This paper discusses embedded systems use cases for hypervisors, including their use in workload consolidation and security applications.

Introduction

Hypervisors are a type of operating system software that allows multiple traditional operating systems to run on the same microprocessor [1]. They were originally introduced in traditional IT data centers to solve workload balancing and system utilization challenges. Initial hypervisors required changes to the guest OS to compensate for a lack of hardware support for the isolation required between guest operating systems. As microprocessor architectures have evolved with direct hardware support for virtualization, hypervisors have become not just practical in embedded systems, but are present in deployed applications [2]. Hypervisors are here to stay in embedded systems. This paper discusses embedded systems use cases for hypervisors, including their use in workload consolidation and security applications.

Read more of this post

Hardware Enforced Virtualization Of Llinux Home Gateways

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Abstract — Trust and security are central to embedded computing as network devices – such as home gateways – have become the first line of defense for the IoT devices connected to the smart home. In this paper, we present a virtualization-based approach to securing home gateway while preserving functionality and performance.

Introduction

Trust and security have never been more important to the embedded computing world, especially when it comes to network devices, such as home gateways, that are the first line of defense for the IoT devices connected to the smart home [4]. In 2017, a plethora of stories have confirmed that these devices are fundamentally broken from a security perspective.

Read more of this post