Hypervisors in Embedded Systems: Applications and Architectures

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Abstract — As microprocessor architectures have evolved with direct hardware support for virtualization, hypervisor software has become not just practical in embedded systems, but present in many commercials applications. This paper discusses embedded systems use cases for hypervisors, including their use in workload consolidation and security applications.

Introduction

Hypervisors are a type of operating system software that allows multiple traditional operating systems to run on the same microprocessor [1]. They were originally introduced in traditional IT data centers to solve workload balancing and system utilization challenges. Initial hypervisors required changes to the guest OS to compensate for a lack of hardware support for the isolation required between guest operating systems. As microprocessor architectures have evolved with direct hardware support for virtualization, hypervisors have become not just practical in embedded systems, but are present in deployed applications [2]. Hypervisors are here to stay in embedded systems. This paper discusses embedded systems use cases for hypervisors, including their use in workload consolidation and security applications.

Read more of this post

Physically Unclonable Functions – A new way to establish trust in silicon

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Download full paper https://bringyourownit.files.wordpress.com/2018/03/puf-physically-unclonable-functions-a-new-way-to-establish-trust-in-silicon.pdf

Abstract — As billions of devices connect to the Internet, security and trust become crucial. This paper proposes a new approach to provisioning a root of trust for every device, based on Physical Unclonable Functions (PUFs). PUFs rely on the unique differences of each silicon component introduced by minute and uncontrollable variations in the manufacturing process. These variations are virtually impossible to replicate. As such they provide an effective way to uniquely identify each device and to extract cryptographic keys used for strong device authentication. This paper describes cutting-edge real-world applications of SRAM PUF technology applied to a hardware security subsystem, as a mechanism to secure software on a microcontroller and as a basis for authenticating IoT devices to the cloud.

Introduction

The Internet of Things already connects billions of devices and this number is expected to grow into the tens of millions in the coming years [5]. To build a trustworthy Internet of Things, it is essential for these devices to have a secure and reliable method to connect to services in the cloud and to each other. A trustworthy authentication mechanism based on device-unique secret keys is needed such that devices can be uniquely identified and such that the source and authenticity of exchanged data can be verified.

In a world of billions of interconnected devices, trust implies more than sound cryptography and resilient transmission protocols: it extends to the device itself, including its hardware and software. The main electronic components within a device must have a well-protected security boundary where cryptographic algorithms can be executed in a secure manner, protected from physical tampering, network attacks or malicious application code [18]. In addition, the cryptographic keys at the basis of the security subsystem must be securely stored and accessible only by the security subsystem itself. The actual hardware and software of the security subsystem must be trusted and free of known vulnerabilities. This can be achieved by reducing the size of the code to minimize the statistical probability of errors, by properly testing and verifying its functionality, by making it unmodifiable for regular users and applications (e.g. part of secure boot or in ROM) but updateable upon proper authentication (to mitigate eventual vulnerabilities before they are exploited on a large scale). Ideally, an attestation mechanism is integrated with the authentication mechanism to assure code integrity at the moment of connecting to a cloud service [3].

Read more of this post

Hardware Enforced Virtualization Of Llinux Home Gateways

Credits: Embedded World Conference 2018, ISBN 978-3-645-50173-6, http://www.embedded-world.eu

Abstract — Trust and security are central to embedded computing as network devices – such as home gateways – have become the first line of defense for the IoT devices connected to the smart home. In this paper, we present a virtualization-based approach to securing home gateway while preserving functionality and performance.

Introduction

Trust and security have never been more important to the embedded computing world, especially when it comes to network devices, such as home gateways, that are the first line of defense for the IoT devices connected to the smart home [4]. In 2017, a plethora of stories have confirmed that these devices are fundamentally broken from a security perspective.

Read more of this post

Virtualization, silicon, and open source are conspiring to secure the Internet of Things

My chat with Brandon Lewis, Technology Editor at  IoT Design, highlighting prpl’s push around roots-of-trust, virtualization, open source, and interoperability in order to secure the Internet of Things (IoT).

Credits: Brandon Lewis, IoT Design, January 28, 2016 @TechieLew

security-guidance-coverThe prpl Foundation is known for open source tools and frameworks like OpenWrt and QEMU, but has recently ventured into the security domain with a new Security prpl Engineering Group (PEG) and the “Security Guidance for Critical Areas of Embedded Computing” document, not to mention wooing you away from your role at security giant Trend Micro. What can you tell us about the drivers behind these moves?

Cesare: One way to look at it is a supply-and-demand schema. On the demand side, according to Gartner, the security market was worth $77 billion in 2015 and it’s going to grow much faster. One strong demand-side driver is the need for stronger security, because industry is not doing a very good job of it – and when I say industry I mean from silicon to software to services – and all of the spending is not resulting in better information security. Read more of this post

How to Fix the Internet of Broken Things

iot-securityThe Internet of Things is already permeating every part of our lives – from healthcare to aviation, automobiles to telecoms. But its security is fundamentally broken. In my previous blog I’ve shown how vulnerabilities found by security researchers could have catastrophic consequences for end users. This isn’t just about data breaches and reputational damage anymore – lives are quite literally on the line. The challenges are many: most vendors operate under the misapprehension that security-by-obscurity will do – and lobby for laws preventing the disclosure of vulnerabilities; a lack of security subject matter expertise creates major vulnerabilities; firmware can too easily be modified; and a lack of separation on the device opens up further avenues for attackers.

But there is something we as an industry can do about it – if we take a new hardware-led approach. This is all about creating an open security framework built on interoperable standards; one which will enable a “root of trust” thanks to secure boot capabilities, and restrict lateral movement with hardware-based virtualization.

Read more of this post

The Security Challenges Threatening to Tear the Internet of Things Apart

IoT SecurityThe Internet of Things (IoT) has the power to transform our lives, making us more productive at work, and happier and safer at home. But it’s also developing at such a rate that it threatens to outstrip our ability to adequately secure it. A piece of software hasn’t been written yet that didn’t contain mistakes – after all, we’re only human. But with non-security experts designing and building connected systems the risks grow ever greater. So what can be done?

Read more of this post

Securing The Internet of (broken) Things: A Matter of Life and Death

Securing the Internet of broken thingsIf you’re like me you’ll probably be getting desensitized by now to the ever-lengthening list of data breach headlines which have saturated the news for the past 24 months or more. Targeted attacks, Advanced Persistent Threats and the like usually end up in the capture of sensitive IP, customer information or trade secrets. The result? Economic damage, board level sackings and a heap of bad publicity for the breached organization. But that’s usually where it ends.

Read more of this post

There is a bug in my Apple – Part 2

Intego announces first-ever iPhone malware scanner – really?

July 12, 2011 11:49 AM ET Gregg Keizer – COMPUTERWORLD

http://www.computerworld.com/s/article/9218339/Mac_security_firm_ships_first_ever_iPhone_malware_scanner

Follow up on my previous post on the new security flaw discovered in Apple’s iPhone and iPad – see https://bringyourownit.com/2011/07/07/oops-there-is-a-bug-in-my-apple/

With impeccable timing, this morning Intego announded the availability of the “first-ever iPhone malware scanner”. Sure enough I went to the Apple Store and downloaded the VirusBarrier app in my iPhone and iPad. My test drive impressions: the app still leaves to the end user the responsibility to check the attachments rather than enforcing it. It is quite clunky and may provide a false sense of security: if you tap the attachment and then release the finger a little too early, you’ll end up opening up the attachment instead of scanning it(!) Probably safer – and cheaper – not to open pdf attachment in general. And as any other consumer app, there is no centralized IT management whatsoever: no reporting and no policy enforcement. One more thing: Apple is supposedly working with Adobe to address this vulnerability and will provide an update soon. At that point this app may become simply useless … but I guess this is one of those situations where “something is better than nothing” …

A few comments from a couple of Trend Micro’s experts:

Mark Bloom, Director – Director Product Marketing @ Trend Micro : “Usage or not, they [Intego] will get a lot of brand awareness out of this…..just for that value, it was worth the development effort.”

Patrick Wheeler, Sr Product Marketing Manager @ Trend Micro : “[… Apple iOS] antimalware matters, which puts us [Trend Micro] at an advantage over MDM-only vendors like MobileIron, Airwatch, and Symantec, and allows us to talk up the differentiation for our own antimalware we get from integration with SPN.”

Oops … there is a bug in my Apple!

The new security hole found in iPhones and iPads reminds us that no platform is immune to security threats and that there is in fact a need for mobile security software for Apple products.

http://online.wsj.com/article/SB10001424052702303365804576431541102701136.html

Not so secure after allHere we go. As it turns out Apple mobile operating system is not so secure after all. While it is common perception that iPhones and iPads are so secure that they don’t even need antimalware software, the reality is that any piece of software is potentially defective and therefore vulnerable to attacks. And Apple is no exception as shown by the recent discovery of a new security flaw affecting Apple’s best selling devices. Even worse, previously discovered security issues in iOS were limited to a minority of jail-broken devices, where end users deliberately patch the standard operating system to escape Apple’s suffocating control on device and apps – see my beer side chat on YouTube at http://www.youtube.com/watch?v=ZjbqI2V18sY.

Read more of this post