RISC-V security: First piece of the puzzle falls into place

 

By Thomas Claburn

10 Sep 2018 at 20:08

Credits: http://www.theregister.co.uk/2018/09/10/sifive_hex_five_riscv_secure_environment/

 

If you’ve been looking at SiFive‘s RISC-V-based chip technology and thinking, y’know what, it’s missing an Arm TrustZone-style element to run sensitive code, well, here’s some good news.

And if you’re just into processor design and checking out alternatives to Arm CPU cores, then this may be some interesting news.

SiFive helps organizations turn semiconductor designs based on the open-source RISC-V instruction set architecture (ISA) into chips. On Monday, it announced it has integrated Hex Five Security’s MultiZone Security trusted execution environment (TEE) into its Freedom SDK.

The technical confection gives companies creating RISC-V chips the tools to implement a security environment comparable to ARM’s TrustZone, though perhaps without past flaws. It should help users of the SiFive toolchain bring security-enforcing silicon to market faster.

Hex Five‘s technology, as its name suggests, allows for the creation of multiple isolated zones in which sensitive code – such as secure boot procedures and cryptographic routines – can run without interference from other programs or operating systems executing at the same time. It works with a Configurator tool that combines the compiled code with a Hex Five nanokernel to run within the secured environment.

TEEs partition the processor in distinct zones and attempt to maintain separation between them to the extent that’s possible. Related work is being done by MIT and UC Berkeley boffins to develop an open source secure enclave called Keystone, one component in a TEE.

Authentication

In a phone interview with The Register, Don Barnetson, cofounder of Hex Five, explained that the TEE sits at the bare metal level and is used to secure the root of trust and authentication below the operating system. A secure enclave like Keystone, he said, would be used to secure a Linux app from other pieces of Linux.

He sees Keystone as complementary to MultiZone.

“RISC-V is an open source ISA,” he said. “The ISA is the contract between the software and hardware. MultiZone allows you to secure that ISA for the first time. Security is often so complicated that people just don’t bother. Our goal is to make it easier.”

MultiZone is being made available through the SiFive Software Ecosystem program, by which participating vendors provide hardware-making customers with IP at little or not cost, to allow chip products to be brought to market before IP bills come due.

“History shows that the complexity associated with properly implementing security technologies often results in them not being used at all,” said Cesare Garlati, co-founder of Hex-Five, in a statement. “Our mission is to enable mainstream adoption of security best practices by simplifying their deployment.”

The RISC-V ISA, backed by the RISC-V Foundation and companies such Google, Nvidia, Western Digital, and Samsung, among others, offers an open, royalty-free set of instruction that companies can use in custom processors.

Chip designer Arm, which charges for its silicon blueprints, has had its feathers ruffled by RISC-V because it represents a potential competitor, once the project matures. The Softbank-owned company launched an anti-RISC-V website in late June, and then removed it after about two weeks after criticism from its own staff and the broader tech industry.

When IoT Attacks – The End of the World as We Know It?

Excerpts of my interview with Phil Muncaster @philmuncaster

InfoSecurity Magazine Q4/2017, 4 October 2017

https://www.infosecurity-magazine.com/digital-editions/digital-edition-q4-2017/

Focus on the Firmware

A cursory look at OWASP’s IoT Security Guidance will highlight just how many elements in the IoT ecosystem could be exploited. Among others, these include the web interface, network, transport encryption layer, mobile app and device firmware. The latter is a key area of focus for the prpl Foundation, a non-profit which is trying to coral the industry into taking a new hardware-based approach to IoT security. Cesare Garlati, chief security strategist, claims that hackers could exploit IoT chip firmware to re-flash the image, allowing them to reboot and execute arbitrary code. “The issue with this kind of attack is that it gives the hackers complete control of the device and it is persistent; it can’t be undone via a system reboot, for example”, he tells Infosecurity. The answer is to ensure IoT systems will only boot up if the first piece of software to execute is cryptographically signed by a trusted entity. “It needs to match on the other side with a public key or certificate which is hard-coded into the device, anchoring the ‘Root of Trust’ into the hardware to make it tamper proof ”, says Garlati.

Read more of this post

Embedded World 2017 – IoT coming of age.

Last week I had the pleasure of attending Embedded World 2017 in Germany as I was invited to give a couple of presentations on the pioneering work we have been doing at the prpl Foundation with regards to the prplHypervisor™ and prplPUF™ APIs for securing IoT. As it turns out, IoT was the top line at the conference that drew in more than 30,000 trade visitors – and the event solidified the notion that embedded computing is now synonymous with IoT.

Read more of this post

Virtualization, silicon, and open source are conspiring to secure the Internet of Things

My chat with Brandon Lewis, Technology Editor at  IoT Design, highlighting prpl’s push around roots-of-trust, virtualization, open source, and interoperability in order to secure the Internet of Things (IoT).

Credits: Brandon Lewis, IoT Design, January 28, 2016 @TechieLew

security-guidance-coverThe prpl Foundation is known for open source tools and frameworks like OpenWrt and QEMU, but has recently ventured into the security domain with a new Security prpl Engineering Group (PEG) and the “Security Guidance for Critical Areas of Embedded Computing” document, not to mention wooing you away from your role at security giant Trend Micro. What can you tell us about the drivers behind these moves?

Cesare: One way to look at it is a supply-and-demand schema. On the demand side, according to Gartner, the security market was worth $77 billion in 2015 and it’s going to grow much faster. One strong demand-side driver is the need for stronger security, because industry is not doing a very good job of it – and when I say industry I mean from silicon to software to services – and all of the spending is not resulting in better information security. Read more of this post

How to Fix the Internet of Broken Things

iot-securityThe Internet of Things is already permeating every part of our lives – from healthcare to aviation, automobiles to telecoms. But its security is fundamentally broken. In my previous blog I’ve shown how vulnerabilities found by security researchers could have catastrophic consequences for end users. This isn’t just about data breaches and reputational damage anymore – lives are quite literally on the line. The challenges are many: most vendors operate under the misapprehension that security-by-obscurity will do – and lobby for laws preventing the disclosure of vulnerabilities; a lack of security subject matter expertise creates major vulnerabilities; firmware can too easily be modified; and a lack of separation on the device opens up further avenues for attackers.

But there is something we as an industry can do about it – if we take a new hardware-led approach. This is all about creating an open security framework built on interoperable standards; one which will enable a “root of trust” thanks to secure boot capabilities, and restrict lateral movement with hardware-based virtualization.

Read more of this post

Securing The Internet of (broken) Things: A Matter of Life and Death

Securing the Internet of broken thingsIf you’re like me you’ll probably be getting desensitized by now to the ever-lengthening list of data breach headlines which have saturated the news for the past 24 months or more. Targeted attacks, Advanced Persistent Threats and the like usually end up in the capture of sensitive IP, customer information or trade secrets. The result? Economic damage, board level sackings and a heap of bad publicity for the breached organization. But that’s usually where it ends.

Read more of this post